Advances in Non-volatile Memory and Storage Technology Books

Click Get Book Button To Download or read online Advances in Non-volatile Memory and Storage Technology books, Available in PDF, ePub, Tuebl and Kindle. This site is like a library, Use search box in the widget to get ebook that you want.

Advances in Non volatile Memory and Storage Technology


Advances in Non volatile Memory and Storage Technology
  • Author : Yoshio Nishi
  • Publisher : Elsevier
  • Release : 2014-06-24
  • ISBN : 9780857098092
  • Language : En, Es, Fr & De
GET BOOK

New solutions are needed for future scaling down of nonvolatile memory. Advances in Non-volatile Memory and Storage Technology provides an overview of developing technologies and explores their strengths and weaknesses. After an overview of the current market, part one introduces improvements in flash technologies, including developments in 3D NAND flash technologies and flash memory for ultra-high density storage devices. Part two looks at the advantages of designing phase change memory and resistive random access memory technologies. It looks in particular at the fabrication, properties, and performance of nanowire phase change memory technologies. Later chapters also consider modeling of both metal oxide and resistive random access memory switching mechanisms, as well as conductive bridge random access memory technologies. Finally, part three looks to the future of alternative technologies. The areas covered include molecular, polymer, and hybrid organic memory devices, and a variety of random access memory devices such as nano-electromechanical, ferroelectric, and spin-transfer-torque magnetoresistive devices. Advances in Non-volatile Memory and Storage Technology is a key resource for postgraduate students and academic researchers in physics, materials science, and electrical engineering. It is a valuable tool for research and development managers concerned with electronics, semiconductors, nanotechnology, solid-state memories, magnetic materials, organic materials, and portable electronic devices. Provides an overview of developing nonvolatile memory and storage technologies and explores their strengths and weaknesses Examines improvements to flash technology, charge trapping, and resistive random access memory Discusses emerging devices such as those based on polymer and molecular electronics, and nanoelectromechanical random access memory (RAM)

Developments in Data Storage


Developments in Data Storage
  • Author : S. N. Piramanayagam
  • Publisher : John Wiley & Sons
  • Release : 2011-11-08
  • ISBN : 9780470501009
  • Language : En, Es, Fr & De
GET BOOK

A timely text on the recent developments in data storage, from a materials perspective Ever-increasing amounts of data storage on hard disk have been made possible largely due to the immense technological advances in the field of data storage materials. Developments in Data Storage: Materials Perspective covers the recent progress and developments in recording technologies, including the emerging non-volatile memory, which could potentially become storage technologies of the future. Featuring contributions from experts around the globe, this book provides engineers and graduate students in materials science and electrical engineering a solid foundation for grasping the subject. The book begins with the basics of magnetism and recording technology, setting the stage for the following chapters on existing methods and related research topics. These chapters focus on perpendicular recording media to underscore the current trend of hard disk media; read sensors, with descriptions of their fundamental principles and challenges; and write head, which addresses the advanced concepts for writing data in magnetic recording. Two chapters are devoted to the highly challenging area in hard disk drives of tribology, which deals with reliability, corrosion, and wear-resistance of the head and media. Next, the book provides an overview of the emerging technologies, such as heat-assisted magnetic recording and bit-patterned media recording. Non-volatile memory has emerged as a promising alternative storage option for certain device applications; two chapters are dedicated to non-volatile memory technologies such as the phase-change and the magnetic random access memories. With a strong focus on the fundamentals along with an overview of research topics, Developments in Data Storage is an ideal reference for graduate students or beginners in the field of magnetic recording. It also serves as an invaluable reference for future storage technologies including non-volatile memories.

Nonvolatile Memory Design


Nonvolatile Memory Design
  • Author : Hai Li
  • Publisher : CRC Press
  • Release : 2017-12-19
  • ISBN : 9781351834193
  • Language : En, Es, Fr & De
GET BOOK

The manufacture of flash memory, which is the dominant nonvolatile memory technology, is facing severe technical barriers. So much so, that some emerging technologies have been proposed as alternatives to flash memory in the nano-regime. Nonvolatile Memory Design: Magnetic, Resistive, and Phase Changing introduces three promising candidates: phase-change memory, magnetic random access memory, and resistive random access memory. The text illustrates the fundamental storage mechanism of these technologies and examines their differences from flash memory techniques. Based on the latest advances, the authors discuss key design methodologies as well as the various functions and capabilities of the three nonvolatile memory technologies.

Logic Non volatile Memory


Logic Non volatile Memory
  • Author : Charles Ching-Hsiang Hsu
  • Publisher : World Scientific
  • Release : 2014
  • ISBN : 9789814460910
  • Language : En, Es, Fr & De
GET BOOK

Would you like to add the capabilities of the Non-Volatile Memory (NVM) as a storage element in your silicon integrated logic circuits, and as a trimming sector in your high voltage driver and other silicon integrated analog circuits? Would you like to learn how to embed the NVM into your silicon integrated circuit products to improve their performance? This book is written to help you. It provides comprehensive instructions on fabricating the NVM using the same processes you are using to fabricate your logic integrated circuits. We at our eMemory company call this technology the embedded Logic NVM. Because embedded Logic NVM has simple fabrication processes, it has replaced the conventional NVM in many traditional and new applications, including LCD driver, LED driver, MEMS controller, touch panel controller, power management unit, ambient and motion sensor controller, micro controller unit (MCU), security ID setting tag, RFID, NFC, PC camera controller, keyboard controller, and mouse controller. The recent explosive growth of the Logic NVM indicates that it will soon dominate all NVM applications. The embedded Logic NVM was invented and has been implemented in users' applications by the 200+ employees of our eMemory company, who are also the authors and author-assistants of this book. This book covers the following Logic NVM products: One Time Programmable (OTP) memory, Multiple Times Programmable (MTP) memory, Flash memory, and Electrically Erasable Programmable Read Only Memory (EEPROM). The fundamentals of the NVM are described in this book, which include: the physics and operations of the memory transistors, the basic building block of the memory cells and the access circuits. All of these products have been used continuously by the industry worldwide. In-depth readers can attain expert proficiency in the implementation of the embedded Logic NVM technology in their products.

Photo Electroactive Non Volatile Memories for Data Storage and Neuromorphic Computing


Photo Electroactive Non Volatile Memories for Data Storage and Neuromorphic Computing
  • Author : Su-Ting Han
  • Publisher : Woodhead Publishing
  • Release : 2020-05-26
  • ISBN : 9780128226063
  • Language : En, Es, Fr & De
GET BOOK

Photo-Electroactive Non-Volatile Memories for Data Storage and Neuromorphic Computing summarizes advances in the development of photo-electroactive memories and neuromorphic computing systems, suggests possible solutions to the challenges of device design, and evaluates the prospects for commercial applications. Sections covers developments in electro-photoactive memory, and photonic neuromorphic and in-memory computing, including discussions on design concepts, operation principles and basic storage mechanism of optoelectronic memory devices, potential materials from organic molecules, semiconductor quantum dots to two-dimensional materials with desirable electrical and optical properties, device challenges, and possible strategies. This comprehensive, accessible and up-to-date book will be of particular interest to graduate students and researchers in solid-state electronics. It is an invaluable systematic introduction to the memory characteristics, operation principles and storage mechanisms of the latest reported electro-photoactive memory devices. Reviews the most promising materials to enable emerging computing memory and data storage devices, including one- and two-dimensional materials, metal oxides, semiconductors, organic materials, and more Discusses fundamental mechanisms and design strategies for two- and three-terminal device structures Addresses device challenges and strategies to enable translation of optical and optoelectronic technologies