Advances in Nuclear Fuel Chemistry Books

Click Get Book Button To Download or read online Advances in Nuclear Fuel Chemistry books, Available in PDF, ePub, Tuebl and Kindle. This site is like a library, Use search box in the widget to get ebook that you want.

Advances in Nuclear Fuel Chemistry


Advances in Nuclear Fuel Chemistry
  • Author : Markus H.A. Piro
  • Publisher : Woodhead Publishing
  • Release : 2020-03-20
  • ISBN : 9780081026519
  • Language : En, Es, Fr & De
GET BOOK

Advances in Nuclear Fuel Chemistry presents a high-level description of nuclear fuel chemistry based on the most recent research and advances. Dr. Markus H.A. Piro and his team of global, expert contributors cover all aspects of both the conventional uranium-based nuclear fuel cycle and non-conventional fuel cycles, including mining, refining, fabrication, and long-term storage, as well as emerging nuclear technologies, such as accident tolerant fuels and molten salt materials. Aimed at graduate students, researchers, academics and practicing engineers and regulators, this book will provide the reader with a single reference from which to learn the fundamentals of classical thermodynamics and radiochemistry. Consolidates the latest research on nuclear fuel chemistry into one comprehensive reference, covering all aspects of traditional and non-traditional nuclear fuel cycles Includes contributions from world-renowned experts from many countries representing government, industry and academia Covers a variety of fuel designs, including conventional uranium dioxide, mixed oxides, research reactor fuels, and molten salt fuels Written by experts with hands-on experience in the development of such designs

Advances in Nuclear Fuel


Advances in Nuclear Fuel
  • Author : Shripad T. Revankar
  • Publisher : BoD – Books on Demand
  • Release : 2012-02-22
  • ISBN : 9789535100423
  • Language : En, Es, Fr & De
GET BOOK

Worldwide there are more than 430 nuclear power plants operating and more plants are being constructed or planned for construction. For nuclear power to be sustainable the nuclear fuel must be sustainable and there should be adequate nuclear fuel waste management program. Continuous technological advances will lead towards sustainable nuclear fuel through closed fuel cycles and advance fuel development. This focuses on challenges and issues that need to be addressed for better performance and safety of nuclear fuel in nuclear plants. These focused areas are on development of high conductivity new fuels, radiation induced corrosion, fuel behavior during abnormal events in reactor, and decontamination of radioactive material.

The Path to Sustainable Nuclear Energy Basic and Applied Research Opportunities for Advanced Fuel Cycles


The Path to Sustainable Nuclear Energy  Basic and Applied Research Opportunities for Advanced Fuel Cycles
  • Author :
  • Publisher :
  • Release : 2005
  • ISBN : OCLC:727337443
  • Language : En, Es, Fr & De
GET BOOK

The objective of this report is to identify new basic science that will be the foundation for advances in nuclear fuel-cycle technology in the near term, and for changing the nature of fuel cycles and of the nuclear energy industry in the long term. The goals are to enhance the development of nuclear energy, to maximize energy production in nuclear reactor parks, and to minimize radioactive wastes, other environmental impacts, and proliferation risks. The limitations of the once-through fuel cycle can be overcome by adopting a closed fuel cycle, in which the irradiated fuel is reprocessed and its components are separated into streams that are recycled into a reactor or disposed of in appropriate waste forms. The recycled fuel is irradiated in a reactor, where certain constituents are partially transmuted into heavier isotopes via neutron capture or into lighter isotopes via fission. Fast reactors are required to complete the transmutation of long-lived isotopes. Closed fuel cycles are encompassed by the Department of Energy?s Advanced Fuel Cycle Initiative (AFCI), to which basic scientific research can contribute. Two nuclear reactor system architectures can meet the AFCI objectives: a?single-tier? system or a?dual-tier? system. Both begin with light water reactors and incorporate fast reactors. The?dual-tier? systems transmute some plutonium and neptunium in light water reactors and all remaining transuranic elements (TRUs) in a closed-cycle fast reactor. Basic science initiatives are needed in two broad areas:? Near-term impacts that can enhance the development of either?single-tier? or?dual-tier? AFCI systems, primarily within the next 20 years, through basic research. Examples: Dissolution of spent fuel, separations of elements for TRU recycling and transmutation Design, synthesis, and testing of inert matrix nuclear fuels and non-oxide fuels Invention and development of accurate on-line monitoring systems for chemical and nuclear species in the nuclear fuel cycle Development of advanced tools for designing reactors with reduced margins and lower costs? Long-term nuclear reactor development requires basic science breakthroughs: Understanding of materials behavior under extreme environmental conditions Creation of new, efficient, environmentally benign chemical separations methods Modeling and simulation to improve nuclear reaction cross-section data, design new materials and separation system, and propagate uncertainties within the fuel cycle Improvement of proliferation resistance by strengthening safeguards technologies and decreasing the attractiveness of nuclear materials A series of translational tools is proposed to advance the AFCI objectives and to bring the basic science concepts and processes promptly into the technological sphere. These tools have the potential to revolutionize the approach to nuclear engineering R & D by replacing lengthy experimental campaigns with a rigorous approach based on modeling, key fundamental experiments, and advanced simulations.

State of the art Report on the Progress of Nuclear Fuel Cycle Chemistry


State of the art Report on the Progress of Nuclear Fuel Cycle Chemistry
  • Author :
  • Publisher :
  • Release : 2018
  • ISBN : OCLC:1196140111
  • Language : En, Es, Fr & De
GET BOOK

The implementation of advanced nuclear systems requires that new technologies associated with the back end of the fuel cycle are developed. The separation of minor actinides from other fuel components is one of the advanced concepts being studied to help close the nuclear fuel cycle and to improve the long-term effects on the performance of geological repositories. Separating spent fuel elements and subsequently converting them through transmutation into short-lived nuclides should considerably reduce the longterm risks associated with nuclear power generation.

The Path to Sustainable Nuclear Energy Basic and Applied Research Opportunities for Advanced Fuel Cycles September 12 14 2005


The Path to Sustainable Nuclear Energy  Basic and Applied Research Opportunities for Advanced Fuel Cycles  September 12 14  2005
  • Author : C. Burns
  • Publisher :
  • Release : 2005
  • ISBN : OCLC:316308194
  • Language : En, Es, Fr & De
GET BOOK

The objective of this report is to identify new basic science that will be the foundation for advances in nuclear fuel-cycle technology in the near term, and for changing the nature of fuel cycles and of the nuclear energy industry in the long term. The goals are to enhance the development of nuclear energy, to maximize energy production in nuclear reactor parks, and to minimize radioactive wastes, other environmental impacts, and proliferation risks. The limitations of the once-through fuel cycle can be overcome by adopting a closed fuel cycle, in which the irradiated fuel is reprocessed and its components are separated into streams that are recycled into a reactor or disposed of in appropriate waste forms. The recycled fuel is irradiated in a reactor, where certain constituents are partially transmuted into heavier isotopes via neutron capture or into lighter isotopes via fission. Fast reactors are required to complete the transmutation of long-lived isotopes. Closed fuel cycles are encompassed by the Department of Energy?s Advanced Fuel Cycle Initiative (AFCI), to which basic scientific research can contribute. Two nuclear reactor system architectures can meet the AFCI objectives: a?single-tier? system or a?dual-tier? system. Both begin with light water reactors and incorporate fast reactors. The?dual-tier? systems transmute some plutonium and neptunium in light water reactors and all remaining transuranic elements (TRUs) in a closed-cycle fast reactor. Basic science initiatives are needed in two broad areas:? Near-term impacts that can enhance the development of either?single-tier? or?dual-tier? AFCI systems, primarily within the next 20 years, through basic research. Examples: Dissolution of spent fuel, separations of elements for TRU recycling and transmutation Design, synthesis, and testing of inert matrix nuclear fuels and non-oxide fuels Invention and development of accurate on-line monitoring systems for chemical and nuclear species in the nuclear fuel cycle Development of advanced tools for designing reactors with reduced margins and lower costs? Long-term nuclear reactor development requires basic science breakthroughs: Understanding of materials behavior under extreme environmental conditions Creation of new, efficient, environmentally benign chemical separations methods Modeling and simulation to improve nuclear reaction cross-section data, design new materials and separation system, and propagate uncertainties within the fuel cycle Improvement of proliferation resistance by strengthening safeguards technologies and decreasing the attractiveness of nuclear materials A series of translational tools is proposed to advance the AFCI objectives and to bring the basic science concepts and processes promptly into the technological sphere. These tools have the potential to revolutionize the approach to nuclear engineering R & D by replacing lengthy experimental campaigns with a rigorous approach based on modeling, key fundamental experiments, and advanced simulations.