Bioremediation and Bioproduct Recovery from Biofuels Books

Click Get Book Button To Download or read online Bioremediation and Bioproduct Recovery from Biofuels books, Available in PDF, ePub, Tuebl and Kindle. This site is like a library, Use search box in the widget to get ebook that you want.

Delivering Low Carbon Biofuels with Bioproduct Recovery


Delivering Low Carbon Biofuels with Bioproduct Recovery
  • Author : Lakhveer Singh
  • Publisher : Elsevier
  • Release : 2020-11-17
  • ISBN : 9780128218532
  • Language : En, Es, Fr & De
GET BOOK

Delivering Low-Carbon Biofuels with Bioproduct Recovery: An Integrated Approach to Commercializing Bioelectrochemical Systems explores current pathways to produce both the bioenergy from bioelectroactive fuel cells (BEFC) and their valuable byproducts using bioelectrochemical systems (BES) approaches. The book focuses on key methods, current designs and established variants of biofuels processing approaches, also including case studies. Chapters review crucial aspects of bioreactor design methodologies, operating principles, bioreactor susceptibility and systems constraints. The book supports vulnerability and hotspot detection through simulation and modeling approaches. Concluding chapters establish drivers for realizable scale-up and commercialization of bioelectrochemical systems. Discusses all major commercially viable biofuels, along with their high-value byproducts Focuses on frontiers of low carbon biofuel technologies with commercialization and scale-up potential Supported by schematics that outline integration with bioelectrochemical systems (BES) approaches

Bioremediation Nutrients and Other Valuable Product Recovery


Bioremediation  Nutrients  and Other Valuable Product Recovery
  • Author : Lakhveer Singh
  • Publisher : Elsevier
  • Release : 2020-11-17
  • ISBN : 9780128227527
  • Language : En, Es, Fr & De
GET BOOK

Bioremediation and Nutrients and Other Valuable Products Recovery: Using Bio-electrochemical Systems reviews key applications in transforming fuel waste substrates into simple low impact and easily assimilative compounds that are environmentally non-labile and tolerant. The book emphasizes waste treatment and nutrient removal and recovery from a diverse array of waste substrates, utilizing Bioelectrochemical Systems (BES) approaches. Throughout, the work emphasizes the utilization of electrode and/or electrolyte components in building self-sustaining fuel cell systems that target the removal of both conventional and emerging pollutants, along with the production of energy. Bioremediation strategies with potential scale-up options for wastewater treatment, metal removal and soil remediation drug derivates and emerging contaminants are discussed with particular emphasis. Chapters explore applications for these varied pollutants, together with prospects in waste minimization, nutrient recycling, water purification and bioremediation of natural resources. Explores a detailed panorama of potential known pollutants with detailed reviews on their removal and recovery Discusses bioproduct recovery application frontiers across wastewater treatment and bioremediation, metal removal and soil remediation, extraction of drug derivates and emerging contaminants Emphasizes pilot scale-up and commercialization potential for each recovery application discussed

Microalgae Cultivation for Biofuels Production


Microalgae Cultivation for Biofuels Production
  • Author : Abu Yousuf
  • Publisher : Academic Press
  • Release : 2019-11-23
  • ISBN : 9780128175378
  • Language : En, Es, Fr & De
GET BOOK

Microalgae Cultivation for Biofuels Production explores the technological opportunities and challenges involved in producing economically competitive algal-derived biofuel. The book discusses efficient methods for cultivation, improvement of harvesting and lipid extraction techniques, optimization of conversion/production processes of fuels and co-products, the integration of microalgae biorefineries to several industries, environmental resilience by microalgae, and a techno-economic and lifecycle analysis of the production chain to gain maximum benefits from microalgae biorefineries. Provides an overview of the whole production chain of microalgal biofuels and other bioproducts Presents an analysis of the economic and sustainability aspects of the production chain Examines the integration of microalgae biorefineries into several industries

Algae and Environmental Sustainability


Algae and Environmental Sustainability
  • Author : Bhaskar Singh
  • Publisher : Springer
  • Release : 2015-12-22
  • ISBN : 9788132226413
  • Language : En, Es, Fr & De
GET BOOK

This book presents the dynamic role of algae in a sustainable environment. Two major aspects, namely bioenergy and bioremediation, have been elaborated in various chapter contributed by scientists and teachers from different geographical areas throughout the world. Algal biofuels is an emerging area of equal interest to researchers, industries, and policy makers working or focusing on alternative (i.e. renewable) fuels. Algae have been an area of interest due to their wide range of applications. Over the last 5 decades, eukaryotic algae have been used in the aquaculture industry as feed for invertebrates, providing a rich source of antioxidants, dietary fiber, minerals and protein. More recently, there has been a focus on the use of algal biomass in the development of alternative fuels. The extraction of oil from algae has been widely explored as a much more viable feedstock than plant-based oils in large-scale fuel production. using algae as feedstock has the advantages that it doesn’t require arable land and that wastewater can be used as a source of nutrients in their culture. The multifunctional approach of algae includes pollution remediation, carbon sequestration, biofuels production, and delivery of value-added products. However, there are still some obstacles that need to be overcome to make their use as potential feedstock for biofuels techno-economically feasible. In order to maintain the sustainability aspect of algal biofuels, various aspects have to be studied and critically analyzed to assess the long-term sustainability of algal derived biofuels. This book discusses the role of algae as a promising future feedstock for biofuels. They are known to sequester carbon in much larger amounts than plants and as such the book also describes their phycoremediation potential for conventional as well as emerging contaminants. It describes the role of anaerobic digestion in algal biorefineries; bioreactions and process parameters; biogas recovery and reuse. The role of algal biofilm based technology in wastewater treatment and transforming waste into bio-products is discussed, and remediation of sewage water through algae is assessed. The book also describes the production of biohydrogen, bio-oil, biodiesel; and the major bottlenecks in their usage. The emerging characterization techniques of these biofuels (bio-oil and biodiesel) are described, as are the decolorizing potential of algae and the genetic engineering techniques that could enhance the production of lipids in algae. Other aspects of the book include the role of remote sensing technology in the monitoring of algae and a life cycle assessment of algal biofuels.

Bioprocess Engineering for Bioremediation


Bioprocess Engineering for Bioremediation
  • Author : Manuel Jerold
  • Publisher : Springer Nature
  • Release : 2020-09-23
  • ISBN : 9783030579111
  • Language : En, Es, Fr & De
GET BOOK

This volume provides an overview of recent trends in bioremediation techniques. Gathering contributions by a multi-disciplinary team of authors, it reviews the available methodologies for the remediation of various types of waste, e.g. e-waste, wastewater, municipal solid waste and algal blooms. Bioprocessing techniques are not only used for environmental cleanup but also for the production of valuable added products from waste biomass. Accordingly, this book provides the reader with an update on current valorization techniques for biofuels, algal biorefineries, and the hydrothermal conversion of biomass. Given its interdisciplinary scope, the book offers a valuable asset for students, researchers and engineers working in biotechnology, environmental engineering, wastewater management, chemical engineering and related areas.