Computational and Data-Driven Chemistry Using Artificial Intelligence Books

Click Get Book Button To Download or read online Computational and Data-Driven Chemistry Using Artificial Intelligence books, Available in PDF, ePub, Tuebl and Kindle. This site is like a library, Use search box in the widget to get ebook that you want.

Computational and Data Driven Chemistry Using Artificial Intelligence


Computational and Data Driven Chemistry Using Artificial Intelligence
  • Author : Takashiro Akitsu
  • Publisher : Elsevier
  • Release : 2021-10-29
  • ISBN : 0128222492
  • Language : En, Es, Fr & De
GET BOOK

Computational and Data-Driven Chemistry Using Artificial Intelligence: Volume 1: Fundamentals, Methods and Applications highlights fundamental knowledge and current developments in the field, giving readers insight into how these tools can be harnessed to enhance their own work. Offering the ability to process large or complex data-sets, compare molecular characteristics and behaviors, and help researchers design or identify new structures, Artificial Intelligence (AI) holds huge potential to revolutionize the future of chemistry. Volume 1 explores the fundamental knowledge and current methods being used to apply AI across a whole host of chemistry applications. Drawing on the knowledge of its expert team of global contributors, the book offers fascinating insight into this rapidly developing field and serves as a great resource for all those interested in exploring the opportunities afforded by the intersection of chemistry and AI in their own work. Part 1 provides foundational information on AI in chemistry, with an introduction to the field and guidance on database usage and statistical analysis to help support newcomers to the field. Part 2 then goes on to discuss approaches currently used to address problems in broad areas such as computational and theoretical chemistry; materials, synthetic and medicinal chemistry; crystallography, analytical chemistry, and spectroscopy. Finally, potential future trends in the field are discussed. Provides an accessible introduction to the current state and future possibilities for AI in chemistry Explores how computational chemistry methods and approaches can both enhance and be enhanced by AI Highlights the interdisciplinary and broad applicability of AI tools across a wide range of chemistry fields

Machine Learning in Chemistry


Machine Learning in Chemistry
  • Author : Edward O. Pyzer-Knapp
  • Publisher :
  • Release : 2020-10-22
  • ISBN : 0841235058
  • Language : En, Es, Fr & De
GET BOOK

Atomic-scale representation and statistical learning of tensorial properties -- Prediction of Mohs hardness with machine learning methods using compositional features -- High-dimensional neural network potentials for atomistic simulations -- Data-driven learning systems for chemical reaction prediction: an analysis of recent approaches -- Using machine learning to inform decisions in drug discovery : an industry perspective -- Cognitive materials discovery and onset of the 5th discovery paradigm.

Handbook of Materials Modeling


Handbook of Materials Modeling
  • Author : Sidney Yip
  • Publisher : Springer Science & Business Media
  • Release : 2007-11-17
  • ISBN : 9781402032868
  • Language : En, Es, Fr & De
GET BOOK

The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.

Machine Learning in Chemistry


Machine Learning in Chemistry
  • Author : Hugh M Cartwright
  • Publisher : Royal Society of Chemistry
  • Release : 2020-07-15
  • ISBN : 9781839160240
  • Language : En, Es, Fr & De
GET BOOK

Progress in the application of machine learning (ML) to the physical and life sciences has been rapid. A decade ago, the method was mainly of interest to those in computer science departments, but more recently ML tools have been developed that show significant potential across wide areas of science. There is a growing consensus that ML software, and related areas of artificial intelligence, may, in due course, become as fundamental to scientific research as computers themselves. Yet a perception remains that ML is obscure or esoteric, that only computer scientists can really understand it, and that few meaningful applications in scientific research exist. This book challenges that view. With contributions from leading research groups, it presents in-depth examples to illustrate how ML can be applied to real chemical problems. Through these examples, the reader can both gain a feel for what ML can and cannot (so far) achieve, and also identify characteristics that might make a problem in physical science amenable to a ML approach. This text is a valuable resource for scientists who are intrigued by the power of machine learning and want to learn more about how it can be applied in their own field.

Artificial Intelligence in Drug Discovery


Artificial Intelligence in Drug Discovery
  • Author : Nathan Brown
  • Publisher : Royal Society of Chemistry
  • Release : 2020-11-11
  • ISBN : 9781839160547
  • Language : En, Es, Fr & De
GET BOOK

Following significant advances in deep learning and related areas interest in artificial intelligence (AI) has rapidly grown. In particular, the application of AI in drug discovery provides an opportunity to tackle challenges that previously have been difficult to solve, such as predicting properties, designing molecules and optimising synthetic routes. Artificial Intelligence in Drug Discovery aims to introduce the reader to AI and machine learning tools and techniques, and to outline specific challenges including designing new molecular structures, synthesis planning and simulation. Providing a wealth of information from leading experts in the field this book is ideal for students, postgraduates and established researchers in both industry and academia.