Direct Numerical Simulation and Multiscale Modelling Books

Click Get Book Button To Download or read online Direct Numerical Simulation and Multiscale Modelling books, Available in PDF, ePub, Tuebl and Kindle. This site is like a library, Use search box in the widget to get ebook that you want.

Direct Numerical Simulation and Multiscale Modelling


Direct Numerical Simulation and Multiscale Modelling
  • Author : Kai Luo
  • Publisher : Academic Press
  • Release : 2021-04
  • ISBN : 0128174897
  • Language : En, Es, Fr & De
GET BOOK

Direct Numerical Simulation and Multiscale Modelling provides a unified description of DNS, LES and RANS in the context of broader modelling and simulation practice. The relevance of these techniques to flow, turbulence, combustion and multiphysics is explained to help readers apply them to a wide range of research topics. Introductory sections help readers get up to speed with the theories of turbulence, combustion, and multiphysics, along with the basics of simulation and modelling. This is followed by thorough treatments of the numerical methods, boundary conditions, and specific modelling approaches for different purposes. Applications in fields including aerospace, biomedical, and chemical engineering are investigated where appropriate. This is the ideal guide for readers interested in direct numerical simulation, or modelling/simulation of turbulence more generally, who need an overview of the methods available and advice on how to select and implement the correct one.

Direct Numerical Simulations of Gas Liquid Multiphase Flows


Direct Numerical Simulations of Gas   Liquid Multiphase Flows
  • Author : Grétar Tryggvason
  • Publisher : Cambridge University Press
  • Release : 2011-03-10
  • ISBN : 9781139496704
  • Language : En, Es, Fr & De
GET BOOK

Accurately predicting the behaviour of multiphase flows is a problem of immense industrial and scientific interest. Modern computers can now study the dynamics in great detail and these simulations yield unprecedented insight. This book provides a comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students. After a brief overview of the context and history the authors review the governing equations. A particular emphasis is placed on the 'one-fluid' formulation where a single set of equations is used to describe the entire flow field and interface terms are included as singularity distributions. Several applications are discussed, showing how direct numerical simulations have helped researchers advance both our understanding and our ability to make predictions. The final chapter gives an overview of recent studies of flows with relatively complex physics, such as mass transfer and chemical reactions, solidification and boiling, and includes extensive references to current work.

Numerical Techniques for Direct and Large Eddy Simulations


Numerical Techniques for Direct and Large Eddy Simulations
  • Author : Xi Jiang
  • Publisher : CRC Press
  • Release : 2016-04-19
  • ISBN : 1420075799
  • Language : En, Es, Fr & De
GET BOOK

Compared to the traditional modeling of computational fluid dynamics, direct numerical simulation (DNS) and large-eddy simulation (LES) provide a very detailed solution of the flow field by offering enhanced capability in predicting the unsteady features of the flow field. In many cases, DNS can obtain results that are impossible using any other means while LES can be employed as an advanced tool for practical applications. Focusing on the numerical needs arising from the applications of DNS and LES, Numerical Techniques for Direct and Large-Eddy Simulations covers basic techniques for DNS and LES that can be applied to practical problems of flow, turbulence, and combustion. After introducing Navier–Stokes equations and the methodologies of DNS and LES, the book discusses boundary conditions for DNS and LES, along with time integration methods. It then describes the numerical techniques used in the DNS of incompressible and compressible flows. The book also presents LES techniques for simulating incompressible and compressible flows. The final chapter explores current challenges in DNS and LES. Helping readers understand the vast amount of literature in the field, this book explains how to apply relevant numerical techniques for practical computational fluid dynamics simulations and implement these methods in fluid dynamics computer programs.

Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage


Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage
  • Author : Alejandro A. Franco
  • Publisher : Springer
  • Release : 2015-11-12
  • ISBN : 9781447156772
  • Language : En, Es, Fr & De
GET BOOK

The aim of this book is to review innovative physical multiscale modeling methods which numerically simulate the structure and properties of electrochemical devices for energy storage and conversion. Written by world-class experts in the field, it revisits concepts, methodologies and approaches connecting ab initio with micro-, meso- and macro-scale modeling of components and cells. It also discusses the major scientific challenges of this field, such as that of lithium-ion batteries. This book demonstrates how fuel cells and batteries can be brought together to take advantage of well-established multi-scale physical modeling methodologies to advance research in this area. This book also highlights promising capabilities of such approaches for inexpensive virtual experimentation. In recent years, electrochemical systems such as polymer electrolyte membrane fuel cells, solid oxide fuel cells, water electrolyzers, lithium-ion batteries and supercapacitors have attracted much attention due to their potential for clean energy conversion and as storage devices. This has resulted in tremendous technological progress, such as the development of new electrolytes and new engineering designs of electrode structures. However, these technologies do not yet possess all the necessary characteristics, especially in terms of cost and durability, to compete within the most attractive markets. Physical multiscale modeling approaches bridge the gap between materials’ atomistic and structural properties and the macroscopic behavior of a device. They play a crucial role in optimizing the materials and operation in real-life conditions, thereby enabling enhanced cell performance and durability at a reduced cost. This book provides a valuable resource for researchers, engineers and students interested in physical modelling, numerical simulation, electrochemistry and theoretical chemistry.

Multiscale Direct Numerical Modeling of Pore scale and Darcy scale Multiphase Flow in Porous Media


Multiscale Direct Numerical Modeling of Pore scale and Darcy scale Multiphase Flow in Porous Media
  • Author : Soheil Esmaeilzadeh
  • Publisher :
  • Release : 2021
  • ISBN : OCLC:1242061747
  • Language : En, Es, Fr & De
GET BOOK

Improving our understanding about the evolution of multiphase flow in porous media is crucial for many applications such as extraction of hydrocarbons and geothermal energy from subsurface reservoirs, ground-water remediation, CO2 capture and storage, and transport of contaminants in aquifers and soil. Although such applications have implications at very large length scales, e.g., in the orders of kilometers, they strongly depend on the complex physics and dynamics that mainly occur at the pore-scale. Studying multiphase flow at the pore-scale using direct numerical modeling requires developing accurate numerical frameworks that not only honor conservation laws of mass, momentum, and energy, but also can precisely represent and track fluid-fluid interfaces in space and time in the presence of complex embedded solid geometries. In this dissertation, we consider incompressible and immiscible two-phase flows under isothermal conditions and in electrokinetic equilibrium. We solve for the conservation of mass and momentum, and using an immersed boundary approach account for the presence of embedded solid boundaries. We use a two-phase flow modeling approach based on the level-set method to capture the interfacial dynamics of the flow. Using our numerical framework, we first validate recent experimental works on phase separation in the form of pinch-off at the pore-scale, then we extend such experimental observations to a wide range of wettability conditions. For the phase separation in the form of pinch-off, we provide a quantitative study of the emerging length and time scales and their dependence on the wettability conditions, capillary effects, and viscous forces. Afterward, we present a subgrid thin-film model in order to resolve the interfacial dynamics of thin-films on curved solid surfaces in porous media. We couple a Navier-Stokes solver with a topology-preserving level-set method and a sub-grid thin-film model in order to simulate immiscible two-phase pore-scale flows in the presence of thin-films on curved solid surfaces. We validate our proposed subgrid thin-film model for the cases of static and dynamic fluid-fluid interfaces in capillary tubes (both drainage and imbibition) in the presence of curved solid surfaces. We compare the thin-film profile obtained by the subgrid thin-film model versus the profile numerically resolved by refined computational grid cells spanning the subgrid resolution of the thin-film and achieve a great agreement. Subsequently, we consider granular porous media with homogeneous and heterogeneous wettability conditions. We investigate the influence of capillary and viscous forces as well as wettability conditions on the interfacial dynamics, displacement efficiency, phase trapping phenomenon, and interfacial instabilities. For the heterogeneous wettability conditions, we consider granular media with mixed-wet conditions as well as fractional (patterned) wettability conditions. Finally, at the end of this dissertation, we present a physics-constrained super-resolution framework that can super-resolve numerical simulation data in both space and time. We test the robustness of our proposed super-resolution framework for super-resolving simulation data obtained for a turbulent flow case of Rayleigh-Bénard convection problem as well as a case of two-phase flow interfacial dynamics in porous media for a subsurface reservoir.