Embedded Discrete Fracture Modeling and Application in Reservoir Simulation Books

Click Get Book Button To Download or read online Embedded Discrete Fracture Modeling and Application in Reservoir Simulation books, Available in PDF, ePub, Tuebl and Kindle. This site is like a library, Use search box in the widget to get ebook that you want.

Embedded Discrete Fracture Modeling and Application in Reservoir Simulation


Embedded Discrete Fracture Modeling and Application in Reservoir Simulation
  • Author : Kamy Sepehrnoori
  • Publisher : Elsevier
  • Release : 2020-08-27
  • ISBN : 9780128196885
  • Language : En, Es, Fr & De
GET BOOK

The development of naturally fractured reservoirs, especially shale gas and tight oil reservoirs, exploded in recent years due to advanced drilling and fracturing techniques. However, complex fracture geometries such as irregular fracture networks and non-planar fractures are often generated, especially in the presence of natural fractures. Accurate modelling of production from reservoirs with such geometries is challenging. Therefore, Embedded Discrete Fracture Modeling and Application in Reservoir Simulation demonstrates how production from reservoirs with complex fracture geometries can be modelled efficiently and effectively. This volume presents a conventional numerical model to handle simple and complex fractures using local grid refinement (LGR) and unstructured gridding. Moreover, it introduces an Embedded Discrete Fracture Model (EDFM) to efficiently deal with complex fractures by dividing the fractures into segments using matrix cell boundaries and creating non-neighboring connections (NNCs). A basic EDFM approach using Cartesian grids and advanced EDFM approach using Corner point and unstructured grids will be covered. Embedded Discrete Fracture Modeling and Application in Reservoir Simulation is an essential reference for anyone interested in performing reservoir simulation of conventional and unconventional fractured reservoirs. Highlights the current state-of-the-art in reservoir simulation of unconventional reservoirs Offers understanding of the impacts of key reservoir properties and complex fractures on well performance Provides case studies to show how to use the EDFM method for different needs

Implementation and Application of the Embedded Discrete Fracture Model EDFM for Reservoir Simulation in Fractured Reservoirs


Implementation and Application of the Embedded Discrete Fracture Model  EDFM  for Reservoir Simulation in Fractured Reservoirs
  • Author : Yifei Xu
  • Publisher :
  • Release : 2015
  • ISBN : OCLC:946749569
  • Language : En, Es, Fr & De
GET BOOK

Fractured reservoirs have gained continuous attention from oil and gas industry. A huge amount of hydrocarbon are trapped in naturally fractured carbonate reservoirs. Besides, the advanced technology of multi-stage hydraulic fracturing have gained a great success in economic development of unconventional oil and gas reservoirs. Fractures add complexity into reservoir flow and significantly impact the ultimate recovery. Therefore, it is important yet challenging to accurately and effectively predict the recovery from fractured reservoirs. Conventional dual-continuum approaches, although effective in the simulation of naturally fractured reservoirs, may fail in some cases due to the highly idealized reservoir model. The unstructured-grid discrete fracture models, although flexible in representing complex fracture geometries, are restricted by the high complexity in gridding and high computational cost. An Embedded Discrete Fracture Model (EDFM) was recently developed to honor the accuracy of discrete fracture models while keeping the efficiency offered by structured gridding. By dividing the fractures into segments using matrix cell boundaries and creating non-neighboring connections (NNCs), the flow influence of fractures can be efficiently modeled through transport indices. In this work, the EDFM was implemented in UTCHEM, a chemical flooding in-house reservoir simulator developed at The University of Texas, to study complex recovery processes in fractured reservoirs. In addition, the model was applied in commercial simulators by making use of the non-intrusive property of the EDFM and the NNC functionality offered by the simulators. The accuracy of the EDFM in the modeling of orthogonal, non-orthogonal, and inclined fractures was verified against fine-grid explicit fracture simulations. Furthermore, case studies were performed to investigate the influence of hydraulic fracture orientations on primary depletion and the impact of large-scale natural fractures on water flooding processes. The influence of matrix grid size and fracture relative permeability was also studied. Finally, with modifications in NNC transmissibility calculation, the EDFM was applied to the modeling of a multi-lateral well stimulation technology. The accuracy of the modified formulations was verified through comparison with a multi-branch well method. The simulations carried out in this work confirmed the flexibility, applicability, and extensiveness of the EDFM.

Shale Gas and Tight Oil Reservoir Simulation


Shale Gas and Tight Oil Reservoir Simulation
  • Author : Wei Yu
  • Publisher : Gulf Professional Publishing
  • Release : 2018-08-10
  • ISBN : 9780128138694
  • Language : En, Es, Fr & De
GET BOOK

Shale Gas and Tight Oil Reservoir Simulation delivers the latest research and applications used to better manage and interpret simulating production from shale gas and tight oil reservoirs. Starting with basic fundamentals, the book then includes real field data that will not only generate reliable reserve estimation, but also predict the effective range of reservoir and fracture properties through multiple history matching solutions. Also included are new insights into the numerical modelling of CO2 injection for enhanced oil recovery in tight oil reservoirs. This information is critical for a better understanding of the impacts of key reservoir properties and complex fractures. Models the well performance of shale gas and tight oil reservoirs with complex fracture geometries Teaches how to perform sensitivity studies, history matching, production forecasts, and economic optimization for shale-gas and tight-oil reservoirs Helps readers investigate data mining techniques, including the introduction of nonparametric smoothing models

Modeling and Simulation of Fluid Flow in Naturally and Hydraulically Fractured Reservoirs Using Embedded Discrete Fracture Model EDFM


Modeling and Simulation of Fluid Flow in Naturally and Hydraulically Fractured Reservoirs Using Embedded Discrete Fracture Model  EDFM
  • Author : Mahmood Shakiba
  • Publisher :
  • Release : 2014
  • ISBN : OCLC:902680960
  • Language : En, Es, Fr & De
GET BOOK

Modeling and simulation of fluid flow in subsurface fractured systems has been steadily a popular topic in petroleum industry. The huge potential hydrocarbon reserve in naturally and hydraulically fractured reservoirs has been a major stimulant for developments in this field. Although several models have found limited applications in studying fractured reservoirs, still more comprehensive models are required to be applied for practical purposes. A recently developed Embedded Discrete Fracture Model (EDFM) incorporates the advantages of two of the well-known approaches, the dual continuum and the discrete fracture models, to investigate more complex fracture geometries. In EDFM, each fracture is embedded inside the matrix grid and is discretized by the cell boundaries. This approach introduces a robust methodology to represent the fracture planes explicitly in the computational domain. As part of this research, the EDFM was implemented in two of The University of Texas in-house reservoir simulators, UTCOMP and UTGEL. The modified reservoir simulators are capable of modeling and simulation of a broad range of reservoir engineering applications in naturally and hydraulically fractured reservoirs. To validate this work, comparisons were made against a fine-grid simulation and a semi-analytical solution. Also, the results were compared for more complicated fracture geometries with the results obtained from EDFM implementation in the GPAS reservoir simulator. In all the examples, good agreements were observed. To further illustrate the application and capabilities of UTCOMP- and UTGEL-EDFM, a few case studies were presented. First, a synthetic reservoir model with a network of fractures was considered to study the impact of well placement. It was shown that considering the configuration of background fracture networks can significantly improve the well placement design and also maximize the oil recovery. Then, the capillary imbibition effect was investigated for the same reservoir models to display its effect on incremental oil recovery. Furthermore, UTCOMP-EDFM was applied for hydraulic fracturing design where the performances of a simple and a complex fracture networks were evaluated in reservoirs with different rock matrix permeabilities. Accordingly, it was shown that a complex network is an ideal design for a very low permeability reservoir, while a simple network results in higher recovery when the reservoir permeability is moderate. Finally, UTGEL-EDFM was employed to optimize a conformance control process. Different injection timings and different gel concentrations were selected for water-flooding processes and their impact on oil recovery was evaluated henceforth.

Development of an Efficient Embedded Discrete Fracture Model for 3D Compositional Reservoir Simulation in Fractured Reservoirs


Development of an Efficient Embedded Discrete Fracture Model for 3D Compositional Reservoir Simulation in Fractured Reservoirs
  • Author : Ali Moinfar
  • Publisher :
  • Release : 2013
  • ISBN : OCLC:859259182
  • Language : En, Es, Fr & De
GET BOOK

Naturally fractured reservoirs (NFRs) hold a significant amount of the world's hydrocarbon reserves. Compared to conventional reservoirs, NFRs exhibit a higher degree of heterogeneity and complexity created by fractures. The importance of fractures in production of oil and gas is not limited to naturally fractured reservoirs. The economic exploitation of unconventional reservoirs, which is increasingly a major source of short- and long-term energy in the United States, hinges in part on effective stimulation of low-permeability rock through multi-stage hydraulic fracturing of horizontal wells. Accurate modeling and simulation of fractured media is still challenging owing to permeability anisotropies and contrasts. Non-physical abstractions inherent in conventional dual porosity and dual permeability models make these methods inadequate for solving different fluid-flow problems in fractured reservoirs. Also, recent approaches for discrete fracture modeling may require large computational times and hence the oil industry has not widely used such approaches, even though they give more accurate representations of fractured reservoirs than dual continuum models. We developed an embedded discrete fracture model (EDFM) for an in-house fully-implicit compositional reservoir simulator. EDFM borrows the dual-medium concept from conventional dual continuum models and also incorporates the effect of each fracture explicitly. In contrast to dual continuum models, fractures have arbitrary orientations and can be oblique or vertical, honoring the complexity and heterogeneity of a typical fractured reservoir. EDFM employs a structured grid to remediate challenges associated with unstructured gridding required for other discrete fracture models. Also, the EDFM approach can be easily incorporated in existing finite difference reservoir simulators. The accuracy of the EDFM approach was confirmed by comparing the results with analytical solutions and fine-grid, explicit-fracture simulations. Comparison of our results using the EDFM approach with fine-grid simulations showed that accurate results can be achieved using moderate grid refinements. This was further verified in a mesh sensitivity study that the EDFM approach with moderate grid refinement can obtain a converged solution. Hence, EDFM offers a computationally-efficient approach for simulating fluid flow in NFRs. Furthermore, several case studies presented in this study demonstrate the applicability, robustness, and efficiency of the EDFM approach for modeling fluid flow in fractured porous media. Another advantage of EDFM is its extensibility for various applications by incorporating different physics in the model. In order to examine the effect of pressure-dependent fracture properties on production, we incorporated the dynamic behavior of fractures into EDFM by employing empirical fracture deformation models. Our simulations showed that fracture deformation, caused by effective stress changes, substantially affects pressure depletion and hydrocarbon recovery. Based on the examples presented in this study, implementation of fracture geomechanical effects in EDFM did not degrade the computational performance of EDFM. Many unconventional reservoirs comprise well-developed natural fracture networks with multiple orientations and complex hydraulic fracture patterns suggested by microseismic data. We developed a coupled dual continuum and discrete fracture model to efficiently simulate production from these reservoirs. Large-scale hydraulic fractures were modeled explicitly using the EDFM approach and numerous small-scale natural fractures were modeled using a dual continuum approach. The transport parameters for dual continuum modeling of numerous natural fractures were derived by upscaling the EDFM equations. Comparison of the results using the coupled model with that of using the EDFM approach to represent all natural and hydraulic fractures explicitly showed that reasonably accurate results can be obtained at much lower computational cost by using the coupled approach with moderate grid refinements.