Extended Finite Element Method Books

Click Get Book Button To Download or read online Extended Finite Element Method books, Available in PDF, ePub, Tuebl and Kindle. This site is like a library, Use search box in the widget to get ebook that you want.

Extended Finite Element Method


Extended Finite Element Method
  • Author : Zhuo Zhuang
  • Publisher : Academic Press
  • Release : 2014-03-24
  • ISBN : 9780124078567
  • Language : En, Es, Fr & De
GET BOOK

Extended Finite Element Method provides an introduction to the extended finite element method (XFEM), a novel computational method which has been proposed to solve complex crack propagation problems. The book helps readers understand the method and make effective use of the XFEM code and software plugins now available to model and simulate these complex problems. The book explores the governing equation behind XFEM, including level set method and enrichment shape function. The authors outline a new XFEM algorithm based on the continuum-based shell and consider numerous practical problems, including planar discontinuities, arbitrary crack propagation in shells and dynamic response in 3D composite materials. Authored by an expert team from one of China's leading academic and research institutions Offers complete coverage of XFEM, from fundamentals to applications, with numerous examples Provides the understanding needed to effectively use the latest XFEM code and software tools to model and simulate dynamic crack problems

Extended Finite Element Method


Extended Finite Element Method
  • Author : Amir R. Khoei
  • Publisher : John Wiley & Sons
  • Release : 2015-02-23
  • ISBN : 9781118457689
  • Language : En, Es, Fr & De
GET BOOK

Introduces the theory and applications of the extended finite element method (XFEM) in the linear and nonlinear problems of continua, structures and geomechanics Extended Finite Element Method: Theory and Applications introduces the theory and applications of the extended finite element method (XFEM) in the linear and nonlinear problems of continua, structures and geomechanics. The XFEM approach is based on an extension of standard finite element method based on the partition of unity method. Extended Finite Element Method: Theory and Applications begins by introducing the concept of partition of unity, various enrichment functions, and fundamentals of XFEM formulation. It then covers the theory and application of XFEM in large deformations, plasticity and contact problems. The implementation of XFEM in fracture mechanics, including the linear, cohesive, and ductile crack propagation is also covered. The theory and applications of the XFEM in multiphase fluid flow, including the hydraulic fracturing in soil saturated media and crack propagation in thermo-hydro-mechanical porous media, is also discussed in detail. Introduces the theory and applications of the extended finite element method (XFEM) in the linear and nonlinear problems of continua, structures and geomechanics Explores the concept of partition of unity, various enrichment functions, and fundamentals of XFEM formulation. Covers numerous applications of XFEM including fracture mechanics, large deformation, plasticity, multiphase flow, hydraulic fracturing and contact problems Accompanied by a website hosting source code and examples

Extended Finite Element Method for Crack Propagation


Extended Finite Element Method for Crack Propagation
  • Author : Sylvie Pommier
  • Publisher : John Wiley & Sons
  • Release : 2013-03-04
  • ISBN : 9781118622698
  • Language : En, Es, Fr & De
GET BOOK

Novel techniques for modeling 3D cracks and their evolution in solids are presented. Cracks are modeled in terms of signed distance functions (level sets). Stress, strain and displacement field are determined using the extended finite elements method (X-FEM). Non-linear constitutive behavior for the crack tip region are developed within this framework to account for non-linear effect in crack propagation. Applications for static or dynamics case are provided.

Extended Finite Element Method


Extended Finite Element Method
  • Author : Soheil Mohammadi
  • Publisher : John Wiley & Sons
  • Release : 2008-04-30
  • ISBN : 9780470697993
  • Language : En, Es, Fr & De
GET BOOK

This important textbook provides an introduction to the concepts of the newly developed extended finite element method (XFEM) for fracture analysis of structures, as well as for other related engineering applications. One of the main advantages of the method is that it avoids any need for remeshing or geometric crack modelling in numerical simulation, while generating discontinuous fields along a crack and around its tip. The second major advantage of the method is that by a small increase in number of degrees of freedom, far more accurate solutions can be obtained. The method has recently been extended to nonlinear materials and other disciplines such as modelling contact and interface, simulation of inclusions and holes, moving and changing phase problems, and even to multiscale analyses. The book is self contained, with summaries of both classical and modern computational techniques. The main chapters include a comprehensive range of numerical examples describing various features of XFEM.

A Regularized Extended Finite Element Method for Modeling the Coupled Cracking and Delamination of Composite Materials


A Regularized Extended Finite Element Method for Modeling the Coupled Cracking and Delamination of Composite Materials
  • Author : Michael James Swindeman
  • Publisher :
  • Release : 2011
  • ISBN : OCLC:826194426
  • Language : En, Es, Fr & De
GET BOOK

As the use of composite materials in aerospace structures continues to increase, the need to properly characterize these materials, especially in terms of damage tolerance, takes on additional importance. The world wide failure exercises (WWFE) are an example of the international interest in this issue. But though there has been a great deal of progress in understanding the initiation of damage and modeling damage propagation along known interfaces, methods that can capture the effects of interactions among various failure modes accurately remain elusive. A method of modeling coupled matrix cracks and delamination in laminated composite materials based on the finite element method has been developed and experimentally validated. Damage initiation is determined using the LARC03 failure criterion. Delamination along ply interfaces is modeled using cohesive zones. Matrix cracks are incorporated into the discretization of the problem domain through a robust Mesh-Independent Cracking (MIC) technique. The matrix cracking technique, termed the Regularized Extended Finite Element Method (Rx-FEM), uses regularized forms of the Heaviside and Dirac Delta generalized functions to transform the crack surface into a volumetric crack zone. The Regularized Extended Finite Element method is compared to benchmark cases. The sensitivity of the solution to mesh size and parameters within the cohesive zone model is studied. Finally, the full method with delamination is employed to study a set of experimental tests performed on open-hole quasi-isotropic laminates. The trends of hole-size and ply thickness are well predicted for the laminates. Rx-FEM is also able to simulate the pattern of damage, as demonstrated by comparisons to x-ray images. From the results of this series of analyses it can be concluded that failures occur when delamination originating at the hole links up with delamination originating at the edge along the path of matrix cracks.