Flexible Manipulators Books

Click Get Book Button To Download or read online Flexible Manipulators books, Available in PDF, ePub, Tuebl and Kindle. This site is like a library, Use search box in the widget to get ebook that you want.

Flexible Robot Manipulators


Flexible Robot Manipulators
  • Author : M.O. Tokhi
  • Publisher : IET
  • Release : 2008
  • ISBN : 9780863414480
  • Language : En, Es, Fr & De
GET BOOK

This book reports recent and new developments in modeling, simulation and control of flexible robot manipulators. The material is presented in four distinct components: a range of modeling approaches including classical techniques based on the Lagrange equation formulation, parametric approaches based on linear input/output models using system identification techniques and neuro-modeling approaches; numerical modeling/simulation techniques for dynamic characterization of flexible manipulators using the finite difference, finite element, symbolic manipulation and customized software techniques; a range of open-loop and closed-loop control techniques based on classical and modern intelligent control methods including soft-computing and smart structures for flexible manipulators; and software environments for analysis, design, simulation and control of flexible manipulators.

Perturbation Techniques for Flexible Manipulators


Perturbation Techniques for Flexible Manipulators
  • Author : Anthony R. Fraser
  • Publisher : Springer Science & Business Media
  • Release : 1991-06-30
  • ISBN : 0792391624
  • Language : En, Es, Fr & De
GET BOOK

A manipulator, or 'robot', consists of a series of bodies (links) connected by joints to form a spatial mechanism. Usually the links are connected serially to form an open chain. The joints are either revolute (rotary) or prismatic (telescopic), various combinations of the two giving a wide va riety of possible configurations. Motive power is provided by pneumatic, hydraulic or electrical actuation of the joints. The robot arm is distinguished from other active spatial mechanisms by its reprogrammability. Therefore, the controller is integral to any de scription of the arm. In contrast with many other controlled processes (e. g. batch reactors), it is possible to model the dynamics of a ma nipulator very accurately. Unfortunately, for practical arm designs, the resulting models are complex and a considerable amount of research ef fort has gone into improving their numerical efficiency with a view to real time solution [32,41,51,61,77,87,91]. In recent years, improvements in electric motor technology coupled with new designs, such as direct-drive arms, have led to a rapid increase in the speed and load-carrying capabilities of manipulators. However, this has meant that the flexibility of the nominally rigid links has become increasingly significant. Present generation manipulators are limited to a load-carrying capacity of typically 5-10% of their own weight by the requirement of rigidity. For example, the Cincinatti-Milicron T3R3 robot weighs more than 1800 kg but has a maximum payload capacity of 23 kg.

Advanced Studies of Flexible Robotic Manipulators


Advanced Studies of Flexible Robotic Manipulators
  • Author : Fei-Yue Wang
  • Publisher : World Scientific
  • Release : 2003
  • ISBN : 981279672X
  • Language : En, Es, Fr & De
GET BOOK

Flexible robotic manipulators pose various challenges in research as compared to rigid robotic manipulators, ranging from system design, structural optimization, and construction to modeling, sensing, and control. Although significant progress has been made in many aspects over the last one-and-a-half decades, many issues are not resolved yet, and simple, effective, and reliable controls of flexible manipulators still remain an open quest. Clearly, further efforts and results in this area will contribute significantly to robotics (particularly automation) as well as its application and education in general control engineering. To accelerate this process, the leading experts in this important area present in this book the state of the art in advanced studies of the design, modeling, control and applications of flexible manipulators. Sample Chapter(s). Chapter 1: Flexible-link Manipulators: Modeling, Nonlinear Control and Observer (235 KB). Contents: Flexible-Link Manipulators: Modeling, Nonlinear Control and Observer (M A Arteaga & B Siciliano); Energy-Based Control of Flexible Link Robots (S S Ge); Trajectory Planning and Compliant Control for Two Manipulators to Deform Flexible Materials (O Al-Jarrah et al.); Force Control of Flexible Manipulators (F Matsuno); Experimental Study on the Control of Flexible Link Robots (D Wang); Sensor Output Feedback Control of Flexible Robot Arms (Z-H Luo); On GA Based Robust Control of Flexible Manipulators (Z-Q Xiao & L-L Cui); Analysis of Poles and Zeros for Tapered Link Designs (D L Girvin & W J Book); Optimum Shape Design of Flexible Manipulators with Tip Loads (J L Russell & Y-Q Gao); Mechatronic Design of Flexible Manipulators (P-X Zhou & Z-Q Xiao); A Comprehensive Study of Dynamic Behaviors of Flexible Robotic Links: Modeling and Analysis (Y-Q Gao & F-Y Wang). Readership: Researchers, lecturers and graduate students in robotics & automated systems, electrical & electronic engineering, and industrial engineering

Motion Planning for Flexible Manipulators


Motion Planning for Flexible Manipulators
  • Author : Christopher Burke Pond
  • Publisher :
  • Release : 1999
  • ISBN : OCLC:1199625449
  • Language : En, Es, Fr & De
GET BOOK

As robotic manipulators become more prevalent, particularly in hazardous environments or for repetitive tasks, demand continues for increased performance and decreased cost. In some applications, both can be achieved by reducing the weight of the manipulator. However, reduced weight often leads to significant structural flexibility and vibration which, for most tasks, is generally regarded as detrimental to performance. Although there has been a great deal of research in the area of controlling flexible manipulators to follow a desired trajectory, much less work has been directed towards choosing the trajectory itself. The objective of this work is to optimize point-to-point motions in joint space to reduce vibration. This problem is formulated as one of functional optimization and the applicable methods of solution are reviewed. An indirect method is chosen that allows modular software development by preserving the integrity of existing nonlinear dynamics models. Numerical results are compared with trajectories generated by other means and show a significant reduction in vibration possible by optimization, particularly for varying joint paths. Finally, the effectiveness of the trajectory optimization scheme is further evaluated for high-speed, large-angle motions of an experimental nonplanar two-link flexible manipulator. Such results are lacking in the literature, but are very important for assessing the utility of trajectory optimization in the presence of modelling and tracking errors. Again, significant reductions in vibration are demonstrated by using the global optimization approach for trajectory generation.

Flexible Manipulators


Flexible Manipulators
  • Author : Yanqing Gao
  • Publisher : Academic Press
  • Release : 2012-04-16
  • ISBN : 9780123973238
  • Language : En, Es, Fr & De
GET BOOK

The Intelligent Systems Series comprises titles that present state-of-the-art knowledge and the latest advances in intelligent systems. Its scope includes theoretical studies, design methods, and real-world implementations and applications. Flexible manipulators play a critical role in applications in a diverse range of fields, such as construction automation, environmental applications, and space engineering. Due to the complexity of the link deformation and dynamics, the research effort on accurate modeling and high performance control of flexible manipulators has increased dramatically in recent years. This book presents analysis, data and insights that will of particular use for researchers and engineers working on the optimization and control of robotic manipulators and automation systems. Government and industry groups have specifically stressed the importance of innovation in robotics, manufacturing automation, and control systems for maintaining innovation and high-value-added manufacturing Discusses the latest research on the quantitative effects of size, shape, mass distribution, tip load, on the dynamics and operational performance of flexible manipulators Presents unique analyses critical to the effective modeling and optimization of manipulators: hard to find data unavailable elsewhere