# Geometry Books

Click Get Book Button To Download or read online Geometry books, Available in PDF, ePub, Tuebl and Kindle. This site is like a library, Use search box in the widget to get ebook that you want.

## College Geometry

- Author : Nathan Altshiller-Court
- Publisher : Courier Corporation
- Release : 2007-04-19
- ISBN : 9780486458052
- Language : En, Es, Fr & De

**GET BOOK**

Translated into many languages, this book was in continuous use as the standard university-level text for a quarter-century, until it was revised and enlarged by the author in 1952. World-renowned writer and researcher Nathan Altshiller-Court (1881–1968) was a professor of mathematics at the University of Oklahoma for more than thirty years. His revised introduction to modern geometry offers today's students the benefits of his many years of teaching experience. The first part of the text stresses construction problems, proceeding to surveys of similitude and homothecy, properties of the triangle and the quadrilateral, and harmonic division. Subsequent chapters explore the geometry of the circle — including inverse points, orthogonals, coaxals, and the problem of Apollonius and triangle geometry, focusing on Lemoine and Brocard geometry, isogonal lines, Tucker circles, and the orthopole. Numerous exercises of varying degrees of difficulty appear throughout the text.

## Handbook of Differential Geometry

- Author : Franki J.E. Dillen
- Publisher : Elsevier
- Release : 2005-11-29
- ISBN : 0080461204
- Language : En, Es, Fr & De

**GET BOOK**

In the series of volumes which together will constitute the "Handbook of Differential Geometry" we try to give a rather complete survey of the field of differential geometry. The different chapters will both deal with the basic material of differential geometry and with research results (old and recent). All chapters are written by experts in the area and contain a large bibliography. In this second volume a wide range of areas in the very broad field of differential geometry is discussed, as there are Riemannian geometry, Lorentzian geometry, Finsler geometry, symplectic geometry, contact geometry, complex geometry, Lagrange geometry and the geometry of foliations. Although this does not cover the whole of differential geometry, the reader will be provided with an overview of some its most important areas. . Written by experts and covering recent research . Extensive bibliography . Dealing with a diverse range of areas . Starting from the basics

## Lectures on Classical Differential Geometry

- Author : Dirk Jan Struik
- Publisher : Courier Corporation
- Release : 1961-01-01
- ISBN : 0486656098
- Language : En, Es, Fr & De

**GET BOOK**

Elementary, yet authoritative and scholarly, this book offers an excellent brief introduction to the classical theory of differential geometry. It is aimed at advanced undergraduate and graduate students who will find it not only highly readable but replete with illustrations carefully selected to help stimulate the student's visual understanding of geometry. The text features an abundance of problems, most of which are simple enough for class use, and often convey an interesting geometrical fact. A selection of more difficult problems has been included to challenge the ambitious student. Written by a noted mathematician and historian of mathematics, this volume presents the fundamental conceptions of the theory of curves and surfaces and applies them to a number of examples. Dr. Struik has enhanced the treatment with copious historical, biographical, and bibliographical references that place the theory in context and encourage the student to consult original sources and discover additional important ideas there. For this second edition, Professor Struik made some corrections and added an appendix with a sketch of the application of Cartan's method of Pfaffians to curve and surface theory. The result was to further increase the merit of this stimulating, thought-provoking text — ideal for classroom use, but also perfectly suited for self-study. In this attractive, inexpensive paperback edition, it belongs in the library of any mathematician or student of mathematics interested in differential geometry.

## Geometry

- Author : David A. Brannan
- Publisher : Cambridge University Press
- Release : 2011-12-22
- ISBN : 1107647835
- Language : En, Es, Fr & De

**GET BOOK**

This richly illustrated and clearly written undergraduate textbook captures the excitement and beauty of geometry. The approach is that of Klein in his Erlangen programme: a geometry is a space together with a set of transformations of the space. The authors explore various geometries: affine, projective, inversive, hyperbolic and elliptic. In each case they carefully explain the key results and discuss the relationships between the geometries. New features in this second edition include concise end-of-chapter summaries to aid student revision, a list of further reading and a list of special symbols. The authors have also revised many of the end-of-chapter exercises to make them more challenging and to include some interesting new results. Full solutions to the 200 problems are included in the text, while complete solutions to all of the end-of-chapter exercises are available in a new Instructors' Manual, which can be downloaded from www.cambridge.org/9781107647831.

## Stochastic Geometry

- Author : David Coupier
- Publisher : Springer
- Release : 2019-04-09
- ISBN : 9783030135478
- Language : En, Es, Fr & De

**GET BOOK**

This volume offers a unique and accessible overview of the most active fields in Stochastic Geometry, up to the frontiers of recent research. Since 2014, the yearly meeting of the French research structure GDR GeoSto has been preceded by two introductory courses. This book contains five of these introductory lectures. The first chapter is a historically motivated introduction to Stochastic Geometry which relates four classical problems (the Buffon needle problem, the Bertrand paradox, the Sylvester four-point problem and the bicycle wheel problem) to current topics. The remaining chapters give an application motivated introduction to contemporary Stochastic Geometry, each one devoted to a particular branch of the subject: understanding spatial point patterns through intensity and conditional intensities; stochastic methods for image analysis; random fields and scale invariance; and the theory of Gibbs point processes. Exposing readers to a rich theory, this book will encourage further exploration of the subject and its wide applications.