High-Performance Embedded Computing Books

Click Get Book Button To Download or read online High-Performance Embedded Computing books, Available in PDF, ePub, Tuebl and Kindle. This site is like a library, Use search box in the widget to get ebook that you want.

High Performance Embedded Computing


High Performance Embedded Computing
  • Author : Marilyn Wolf
  • Publisher : Newnes
  • Release : 2014-03-17
  • ISBN : 9780124104884
  • Language : En, Es, Fr & De
GET BOOK

High-Performance Embedded Computing, Second Edition, combines leading-edge research with practical guidance in a variety of embedded computing topics, including real-time systems, computer architecture, and low-power design. Author Marilyn Wolf presents a comprehensive survey of the state of the art, and guides you to achieve high levels of performance from the embedded systems that bring these technologies together. The book covers CPU design, operating systems, multiprocessor programs and architectures, and much more. Embedded computing is a key component of cyber-physical systems, which combine physical devices with computational resources for control and communication. This revised edition adds new content and examples of cyber-physical systems throughout the book, including design methodologies, scheduling, and wide-area CPS to illustrate the possibilities of these new systems. Revised and updated with coverage of recently developed consumer electronics architectures and models of computing Includes new VLIW processors such as the TI Da Vinci, and CPU simulation Learn model-based verification and middleware for embedded systems Supplemental material includes lecture slides, labs, and additional resources

High Performance Embedded Computing


High Performance Embedded Computing
  • Author : Wayne Wolf
  • Publisher : Elsevier
  • Release : 2010-07-26
  • ISBN : 0080475000
  • Language : En, Es, Fr & De
GET BOOK

Over the past several years, embedded systems have emerged as an integral though unseen part of many consumer, industrial, and military devices. The explosive growth of these systems has resulted in embedded computing becoming an increasingly important discipline. The need for designers of high-performance, application-specific computing systems has never been greater, and many universities and colleges in the US and worldwide are now developing advanced courses to help prepare their students for careers in embedded computing. High-Performance Embedded Computing: Architectures, Applications, and Methodologies is the first book designed to address the needs of advanced students and industry professionals. Focusing on the unique complexities of embedded system design, the book provides a detailed look at advanced topics in the field, including multiprocessors, VLIW and superscalar architectures, and power consumption. Fundamental challenges in embedded computing are described, together with design methodologies and models of computation. HPEC provides an in-depth and advanced treatment of all the components of embedded systems, with discussions of the current developments in the field and numerous examples of real-world applications. Covers advanced topics in embedded computing, including multiprocessors, VLIW and superscalar architectures, and power consumption Provides in-depth coverage of networks, reconfigurable systems, hardware-software co-design, security, and program analysis Includes examples of many real-world embedded computing applications (cell phones, printers, digital video) and architectures (the Freescale Starcore, TI OMAP multiprocessor, the TI C5000 and C6000 series, and others)

Embedded Computing for High Performance


Embedded Computing for High Performance
  • Author : João Manuel Paiva Cardoso
  • Publisher : Morgan Kaufmann
  • Release : 2017-06-13
  • ISBN : 9780128041994
  • Language : En, Es, Fr & De
GET BOOK

Embedded Computing for High Performance: Design Exploration and Customization Using High-level Compilation and Synthesis Tools provides a set of real-life example implementations that migrate traditional desktop systems to embedded systems. Working with popular hardware, including Xilinx and ARM, the book offers a comprehensive description of techniques for mapping computations expressed in programming languages such as C or MATLAB to high-performance embedded architectures consisting of multiple CPUs, GPUs, and reconfigurable hardware (FPGAs). The authors demonstrate a domain-specific language (LARA) that facilitates retargeting to multiple computing systems using the same source code. In this way, users can decouple original application code from transformed code and enhance productivity and program portability. After reading this book, engineers will understand the processes, methodologies, and best practices needed for the development of applications for high-performance embedded computing systems. Focuses on maximizing performance while managing energy consumption in embedded systems Explains how to retarget code for heterogeneous systems with GPUs and FPGAs Demonstrates a domain-specific language that facilitates migrating and retargeting existing applications to modern systems Includes downloadable slides, tools, and tutorials

High Performance Embedded Computing Handbook


High Performance Embedded Computing Handbook
  • Author : David R. Martinez
  • Publisher : CRC Press
  • Release : 2018-10-03
  • ISBN : 9781351837798
  • Language : En, Es, Fr & De
GET BOOK

Over the past several decades, applications permeated by advances in digital signal processing have undergone unprecedented growth in capabilities. The editors and authors of High Performance Embedded Computing Handbook: A Systems Perspective have been significant contributors to this field, and the principles and techniques presented in the handbook are reinforced by examples drawn from their work. The chapters cover system components found in today’s HPEC systems by addressing design trade-offs, implementation options, and techniques of the trade, then solidifying the concepts with specific HPEC system examples. This approach provides a more valuable learning tool, Because readers learn about these subject areas through factual implementation cases drawn from the contributing authors’ own experiences. Discussions include: Key subsystems and components Computational characteristics of high performance embedded algorithms and applications Front-end real-time processor technologies such as analog-to-digital conversion, application-specific integrated circuits, field programmable gate arrays, and intellectual property–based design Programmable HPEC systems technology, including interconnection fabrics, parallel and distributed processing, performance metrics and software architecture, and automatic code parallelization and optimization Examples of complex HPEC systems representative of actual prototype developments Application examples, including radar, communications, electro-optical, and sonar applications The handbook is organized around a canonical framework that helps readers navigate through the chapters, and it concludes with a discussion of future trends in HPEC systems. The material is covered at a level suitable for practicing engineers and HPEC computational practitioners and is easily adaptable to their own implementation requirements.

Embedded Computing


Embedded Computing
  • Author : Joseph A. Fisher
  • Publisher : Elsevier
  • Release : 2005
  • ISBN : 9781558607668
  • Language : En, Es, Fr & De
GET BOOK

The fact that there are more embedded computers than general-purpose computers and that we are impacted by hundreds of them every day is no longer news. What is news is that their increasing performance requirements, complexity and capabilities demand a new approach to their design. Fisher, Faraboschi, and Young describe a new age of embedded computing design, in which the processor is central, making the approach radically distinct from contemporary practices of embedded systems design. They demonstrate why it is essential to take a computing-centric and system-design approach to the traditional elements of nonprogrammable components, peripherals, interconnects and buses. These elements must be unified in a system design with high-performance processor architectures, microarchitectures and compilers, and with the compilation tools, debuggers and simulators needed for application development. In this landmark text, the authors apply their expertise in highly interdisciplinary hardware/software development and VLIW processors to illustrate this change in embedded computing. VLIW architectures have long been a popular choice in embedded systems design, and while VLIW is a running theme throughout the book, embedded computing is the core topic. Embedded Computing examines both in a book filled with fact and opinion based on the authors many years of R&D experience. · Complemented by a unique, professional-quality embedded tool-chain on the authors' website, http://www.vliw.org/book · Combines technical depth with real-world experience · Comprehensively explains the differences between general purpose computing systems and embedded systems at the hardware, software, tools and operating system levels. · Uses concrete examples to explain and motivate the trade-offs.