Hybrid Additive Manufacturing Books

Click Get Book Button To Download or read online Hybrid Additive Manufacturing books, Available in PDF, ePub, Tuebl and Kindle. This site is like a library, Use search box in the widget to get ebook that you want.

Hybrid Additive Manufacturing


Hybrid Additive Manufacturing
  • Author : Guha Manogharan
  • Publisher : Academic Press
  • Release : 2020-07
  • ISBN : 0128181702
  • Language : En, Es, Fr & De
GET BOOK

Hybrid Additive Manufacturing: Techniques, Applications and Benefits explains the fundamentals of hybrid AM, definitions, classifications, and principles, as well as key techniques of hybrid AM, its applications, design guidelines, and benefits, with emphasis on key aspects of the system integration process. The core of this subject is in describing how to overcome inherent processing limitations of layer-by-layer AM through the integration of secondary post-processing such as machining or heat treatment. As a result hybrid AM plays a critical role in accelerating the adoption of AM in established design and manufacturing activities. The applications of hybrid AM in both metals and polymers are discussed in this book, as are geometrical dimensioning and tolerancing, material property enhancement, non-traditional surface finishing, in-situ sequential hybrid processing, and integrated process planning. This book will serve not only as an introduction to hybrid AM but also as a handbook for researchers and engineers in mechanical, manufacturing, industrial, electronics, and materials science, thanks to its interdisciplinary approach and detailed case studies. Explains how hybrid manufacturing processes can be used to achieve enhanced material properties and functionality Describes the significance of hybrid additive manufacturing to different parts of the process chain Uses case studies to show how innovative companies are using this technology, how they have overcome challenges they encountered, and the benefits they have experienced

Additive Manufacturing Technologies


Additive Manufacturing Technologies
  • Author : Ian Gibson
  • Publisher : Springer
  • Release : 2014-11-26
  • ISBN : 9781493921133
  • Language : En, Es, Fr & De
GET BOOK

This book covers in detail the various aspects of joining materials to form parts. A conceptual overview of rapid prototyping and layered manufacturing is given, beginning with the fundamentals so that readers can get up to speed quickly. Unusual and emerging applications such as micro-scale manufacturing, medical applications, aerospace, and rapid manufacturing are also discussed. This book provides a comprehensive overview of rapid prototyping technologies as well as support technologies such as software systems, vacuum casting, investment casting, plating, infiltration and other systems. This book also: Reflects recent developments and trends and adheres to the ASTM, SI, and other standards Includes chapters on automotive technology, aerospace technology and low-cost AM technologies Provides a broad range of technical questions to ensure comprehensive understanding of the concepts covered

Additive Manufacturing Hybrid Processes for Composites Systems


Additive Manufacturing Hybrid Processes for Composites Systems
  • Author : António Torres Marques
  • Publisher : Springer Nature
  • Release : 2020-04-27
  • ISBN : 9783030445225
  • Language : En, Es, Fr & De
GET BOOK

This book focuses on the emerging additive manufacturing technology and its applications beyond state-of-the-art, fibre-reinforced thermoplastics. It also discusses the development of a hybrid, integrated process that combines additive and subtractive operations in a single-step platform, allowing CAD-to-Part production with freeform shapes using long or continuous fibre-reinforced thermoplastics. The book covers the entire value chain of this next-generation technology, from part design and materials composition to transformation stages, product evaluation, and end-of-life studies. Moreover, it addresses the following engineering issues: • Design rules for hybrid additive manufacturing; • Thermoplastic compounds for high-temperature and -strength applications; • Advanced extrusion heads and process concepts; • Hybridisation strategies; • Software ecosystems for hAM design, pre-processing, process planning, emulating and multi-axis processing; • 3D path generators for hAM based on a multi-objective optimisation algorithm that matches the recent curved adaptive slicing method with a new transversal scheme; • hAM parameters, real-time monitoring and closed-loop control; • Multiparametric nondestructive testing (NDT) tools customised for FRTP AM parts; • Sustainable manufacturing processes validated by advanced LCA/LCC models.

Modeling Residual Stress Development in Hybrid Processing by Additive Manufacturing and Laser Shock Peening


Modeling Residual Stress Development in Hybrid Processing by Additive Manufacturing and Laser Shock Peening
  • Author : Guru Charan Reddy Madireddy
  • Publisher :
  • Release : 2018
  • ISBN : OCLC:1052124117
  • Language : En, Es, Fr & De
GET BOOK

The term “hybrid” has been widely applied to many areas of manufacturing. Naturally, that term has found a home in additive manufacturing as well. Hybrid additive manufacturing or hybrid-AM has been used to describe multi-material printing, combined machines (e.g., deposition printing and milling machine center), and combined processes (e.g., printing and interlayer laser re-melting). The capabilities afforded by hybrid-AM are rewriting the design rules for materials and adding a new dimension in the design for additive manufacturing paradigm. This work focuses on hybrid-AM processes, which are defined as the use of additive manufacturing (AM) with one or more secondary processes or energy sources that are fully coupled and synergistically affect part quality, functionality, and/or process performance. Secondary processes and energy sources include subtractive and transformative manufacturing technologies, such as machining, re-melting, peening, rolling, and friction stir processing. Of particular interest to this research is combining additive manufacturing with laser shock peening (LSP) in a cyclic process chain to print 3D mechanical properties. Additive manufacturing of metals often results in parts with unfavorable mechanical properties. Laser shock peening is a high strain rate mechanical surface treatment that hammers a work piece and induces favorable mechanical properties. Peening strain hardens a surface and imparts compressive residual stresses improving the mechanical properties of the material. The overarching objective of this work is to investigate the role LSP has on layer-by-layer processing of 3D printed metals. As a first study in this field, this thesis primarily focuses on the following: (1) defining hybrid-AM in relation to hybrid manufacturing and classifying hybrid-AM processes and (2) modeling hybrid-AM by LSP to understand the role of hybrid process parameters on temporal and spatial residual stress development. A finite element model was developed to help understand thermal and mechanical cancellation of residual stress when cyclically coupling printing and peening. Results indicate layer peening frequency is a critical process parameter and highly interdependent on the heat generated by the printing laser source. Optimum hybrid process conditions were found to exists that favorably enhance mechanical properties. With this demonstration, hybrid-AM has ushered in the next evolutionary step in additive manufacturing and has the potential to profoundly change the way high value metal goods are manufactured.

Additive Manufacturing Hybrid Processes for Composites Systems


Additive Manufacturing Hybrid Processes for Composites Systems
  • Author : António Torres Marques
  • Publisher : Springer
  • Release : 2021-05-12
  • ISBN : 3030445240
  • Language : En, Es, Fr & De
GET BOOK

This book focuses on the emerging additive manufacturing technology and its applications beyond state-of-the-art, fibre-reinforced thermoplastics. It also discusses the development of a hybrid, integrated process that combines additive and subtractive operations in a single-step platform, allowing CAD-to-Part production with freeform shapes using long or continuous fibre-reinforced thermoplastics. The book covers the entire value chain of this next-generation technology, from part design and materials composition to transformation stages, product evaluation, and end-of-life studies. Moreover, it addresses the following engineering issues: • Design rules for hybrid additive manufacturing; • Thermoplastic compounds for high-temperature and -strength applications; • Advanced extrusion heads and process concepts; • Hybridisation strategies; • Software ecosystems for hAM design, pre-processing, process planning, emulating and multi-axis processing; • 3D path generators for hAM based on a multi-objective optimisation algorithm that matches the recent curved adaptive slicing method with a new transversal scheme; • hAM parameters, real-time monitoring and closed-loop control; • Multiparametric nondestructive testing (NDT) tools customised for FRTP AM parts; • Sustainable manufacturing processes validated by advanced LCA/LCC models.