Hybrid Energy System Models Books

Click Get Book Button To Download or read online Hybrid Energy System Models books, Available in PDF, ePub, Tuebl and Kindle. This site is like a library, Use search box in the widget to get ebook that you want.

Hybrid Energy System Models


Hybrid Energy System Models
  • Author : Asmae Berrada
  • Publisher : Academic Press
  • Release : 2020-12-04
  • ISBN : 9780128214046
  • Language : En, Es, Fr & De
GET BOOK

Hybrid Energy System Models presents a number of techniques to model a large variety of hybrid energy systems in all aspects of sizing, design, operation, economic dispatch, optimization and control. The book's authors present a number of new methods to model hybrid energy systems and several renewable energy systems, including photovoltaic, solar plus wind and hydropower, energy storage, and combined heat and power systems. With critical modeling examples, global case studies and techno-economic modeling integrated in every chapter, this book is essential to understanding the development of affordable energy systems globally, particularly from renewable resources. With a detailed overview and a comparison of hybrid energy systems used in different regions, as well as innovative hybrid energy system designs covered, this book is useful for practicing power and energy engineers needing answers for what factors to consider when modeling a hybrid energy system and what tools are available to model hybrid systems. Combines research on several renewable energy systems, energy storage, and combined heat and power systems into a single informative resource on hybrid energy systems Includes significant global case studies of current and novel modeling techniques for comparison Covers numerical simulations of hybrid systems energy modeling and applications

Hybrid Energy System Models


Hybrid Energy System Models
  • Author : Asmae Berrada
  • Publisher : Academic Press
  • Release : 2020-12-10
  • ISBN : 9780128214039
  • Language : En, Es, Fr & De
GET BOOK

Hybrid Energy System Models presents a number of techniques to model a large variety of hybrid energy systems in all aspects of sizing, design, operation, economic dispatch, optimization and control. The book's authors present a number of new methods to model hybrid energy systems and several renewable energy systems, including photovoltaic, solar plus wind and hydropower, energy storage, and combined heat and power systems. With critical modeling examples, global case studies and techno-economic modeling integrated in every chapter, this book is essential to understanding the development of affordable energy systems globally, particularly from renewable resources. With a detailed overview and a comparison of hybrid energy systems used in different regions, as well as innovative hybrid energy system designs covered, this book is useful for practicing power and energy engineers needing answers for what factors to consider when modeling a hybrid energy system and what tools are available to model hybrid systems. Combines research on several renewable energy systems, energy storage, and combined heat and power systems into a single informative resource on hybrid energy systems Includes significant global case studies of current and novel modeling techniques for comparison Covers numerical simulations of hybrid systems energy modeling and applications

Modeling and Simulation of Smart Grid Integrated with Hybrid Renewable Energy Systems


Modeling and Simulation of Smart Grid Integrated with Hybrid Renewable Energy Systems
  • Author : Mohamed Abdelaziz Mohamed
  • Publisher : Springer
  • Release : 2017-08-03
  • ISBN : 9783319647951
  • Language : En, Es, Fr & De
GET BOOK

This book presents a comprehensive definition of smart grids and their benefits, and compares smart and traditional grids. It also introduces a design methodology for stand-alone hybrid renewable energy system with and without applying the smart grid concepts for comparison purposes. It discusses using renewable energy power plants to feed loads in remote areas as well as in central power plants connected to electric utilities. Smart grid concepts used in the design of the hybrid renewable power systems can reduce the size of components, which can be translated to a reduction in the cost of generated energy. The proposed hybrid renewable energy system includes wind, photovoltaic, battery, and diesel, and is used initially to feed certain loads, covering the load required completely. The book introduces a novel methodology taking the smart grid concept into account by dividing the loads into high and low priority parts. The high priority part should be supplied at any generated conditions. However, the low priority loads can be shifted to the time when the generated energy from renewable energy sources is greater than the high priority loads requirements. The results show that the use of this smart grid concept reduces the component size and the cost of generated energy compared to that without dividing the loads. The book also describes the use of smart optimization techniques like particle swarm optimization (PSO) and genetic algorithm (GA) to optimally design the hybrid renewable energy system. This book provides an excellent background to renewable energy sources, optimal sizing and locating of hybrid renewable energy sources, the best optimization methodologies for sizing and designing the components of hybrid renewable energy systems, and offers insights into using smart grid concepts in the system’s design and sizing. It also helps readers understand the dispatch methodology and how to connect the system’s different components, their modeling, and the cost analysis of the system.

Sustainable Energy


Sustainable Energy
  • Author : Ahmed F. Zobaa
  • Publisher : BoD – Books on Demand
  • Release : 2016-12-21
  • ISBN : 9789535128397
  • Language : En, Es, Fr & De
GET BOOK

The sustainable energy sources are potentially employed to substitute petrol fuels in transport engines such as buses and small vehicles. Hydrogen-enriched compressed natural gas engines are forthcoming energy carriers for the internal combustion engine, with higher thermal efficiency and less pollutant emissions. The different availability of renewables has allowed various countries to adopt the most appropriate type of renewable energy technology according to their energy source adequacy/abundance. In Taiwan, ocean energy is considered as an abundant source of renewables due to its geographical location as an island. The Taiwanese government has approved the investment to construct an MW-scale demonstration electricity plant. In this book, the Taiwanese ocean energy experience is comprehensively presented. The technical and legal analyses of ocean energy implementation are provided. The challenges that they had to overcome to optimize the utilization of the most available ocean energy potential are discussed. The sustainable transition in South Africa would be a good example for implementing rooftop solar, especially in low-income communities. Apart from the environmental benefits, sustainable energy technologies can boost the socioeconomic level of developing countries. Other advantages may be the continuous supply of energy and creation of new job opportunities. Moreover, sustainable renewable energy sources such as the wind could be employed for generating electricity to operate water purification systems in remote areas. This, in turn, would overcome the health problems associated with drinking water scarcity issues. This book is an attempt to cover the sustainable energy issues from a technical perspective. Furthermore, the sustainable energy applications and existing case studies are helpful illustrations for the broad understanding of the importance of sustainable energy.

Hybrid Renewable Energy Systems in Microgrids


Hybrid Renewable Energy Systems in Microgrids
  • Author : Hina Fathima
  • Publisher : Woodhead Publishing
  • Release : 2018-06-02
  • ISBN : 9780081024942
  • Language : En, Es, Fr & De
GET BOOK

Hybrid-Renewable Energy Systems in Microgrids: Integration, Developments and Control presents the most up-to-date research and developments on hybrid-renewable energy systems (HRES) in a single, comprehensive resource. With an enriched collection of topics pertaining to the control and management of hybrid renewable systems, this book presents recent innovations that are molding the future of power systems and their developing infrastructure. Topics of note include distinct integration solutions and control techniques being implemented into HRES that are illustrated through the analysis of various global case studies. With a focus on devices and methods to integrate different renewables, this book provides those researching and working in renewable energy solutions and power electronics with a firm understanding of the technologies available, converter and multi-level inverter considerations, and control and operation strategies. Includes significant case studies of control techniques and integration solutions which provide a deeper level of understanding and knowledge Combines existing research into a single informative resource on micro grids with HRES integration and control Includes architectural considerations and various control strategies for the operation of hybrid systems