Intelligent Systems and Learning Data Analytics in Online Education Books

Click Get Book Button To Download or read online Intelligent Systems and Learning Data Analytics in Online Education books, Available in PDF, ePub, Tuebl and Kindle. This site is like a library, Use search box in the widget to get ebook that you want.

Intelligent Systems and Learning Data Analytics in Online Education


Intelligent Systems and Learning Data Analytics in Online Education
  • Author : Santi Caballé
  • Publisher : Elsevier
  • Release : 2021-07-02
  • ISBN : 9780128234105
  • Language : En, Es, Fr & De
GET BOOK

Intelligent Systems and Learning Data Analytics in Online Education provides novel artificial intelligence (AI) and analytics-based methods to improve online teaching and learning. This book addresses key problems such as attrition and lack of engagement in MOOCs and online learning in general. This book explores the state of the art of artificial intelligence, software tools and innovative learning strategies to provide better understanding and solutions to the various challenges of current e-learning in general and MOOC education. In particular, Intelligent Systems and Learning Data Analytics in Online Education shares stimulating theoretical and practical research from leading international experts. This publication provides useful references for educational institutions, industry, academic researchers, professionals, developers, and practitioners to evaluate and apply. Presents the application of innovative AI techniques to collaborative learning activities Offers strategies to provide automatic and effective tutoring to students' activities Offers methods to collect, analyze and correctly visualize learning data in educational environments

Intelligent Systems and Learning Data Analytics in Online Education


Intelligent Systems and Learning Data Analytics in Online Education
  • Author : Santi Caballé
  • Publisher : Academic Press
  • Release : 2021-06-15
  • ISBN : 9780128231272
  • Language : En, Es, Fr & De
GET BOOK

Intelligent Systems and Learning Data Analytics in Online Education provides novel artificial intelligence (AI) and analytics-based methods to improve online teaching and learning. This book addresses key problems such as attrition and lack of engagement in MOOCs and online learning in general. This book explores the state of the art of artificial intelligence, software tools and innovative learning strategies to provide better understanding and solutions to the various challenges of current e-learning in general and MOOC education. In particular, Intelligent Systems and Learning Data Analytics in Online Education shares stimulating theoretical and practical research from leading international experts. This publication provides useful references for educational institutions, industry, academic researchers, professionals, developers, and practitioners to evaluate and apply. Presents the application of innovative AI techniques to collaborative learning activities Offers strategies to provide automatic and effective tutoring to students’ activities Offers methods to collect, analyze and correctly visualize learning data in educational environments

Intelligent Data Analysis for E Learning


Intelligent Data Analysis for E Learning
  • Author : Jorge Miguel
  • Publisher : Academic Press
  • Release : 2016-08-09
  • ISBN : 0128045353
  • Language : En, Es, Fr & De
GET BOOK

Intelligent Data Analysis for e-Learning: Enhancing Security and Trustworthiness in Online Learning Systems addresses information security within e-Learning based on trustworthiness assessment and prediction. Over the past decade, many learning management systems have appeared in the education market. Security in these systems is essential for protecting against unfair and dishonest conduct-most notably cheating-however, e-Learning services are often designed and implemented without considering security requirements. This book provides functional approaches of trustworthiness analysis, modeling, assessment, and prediction for stronger security and support in online learning, highlighting the security deficiencies found in most online collaborative learning systems. The book explores trustworthiness methodologies based on collective intelligence than can overcome these deficiencies. It examines trustworthiness analysis that utilizes the large amounts of data-learning activities generate. In addition, as processing this data is costly, the book offers a parallel processing paradigm that can support learning activities in real-time. The book discusses data visualization methods for managing e-Learning, providing the tools needed to analyze the data collected. Using a case-based approach, the book concludes with models and methodologies for evaluating and validating security in e-Learning systems. Provides guidelines for anomaly detection, security analysis, and trustworthiness of data processing Incorporates state-of-the-art, multidisciplinary research on online collaborative learning, social networks, information security, learning management systems, and trustworthiness prediction Proposes a parallel processing approach that decreases the cost of expensive data processing Offers strategies for ensuring against unfair and dishonest assessments Demonstrates solutions using a real-life e-Learning context

Intelligent Data Analysis for e Learning


Intelligent Data Analysis for e Learning
  • Author : Jorge Miguel
  • Publisher : Morgan Kaufmann
  • Release : 2016-09-06
  • ISBN : 9780128045459
  • Language : En, Es, Fr & De
GET BOOK

Intelligent Data Analysis for e-Learning: Enhancing Security and Trustworthiness in Online Learning Systems addresses information security within e-Learning based on trustworthiness assessment and prediction. Over the past decade, many learning management systems have appeared in the education market. Security in these systems is essential for protecting against unfair and dishonest conduct—most notably cheating—however, e-Learning services are often designed and implemented without considering security requirements. This book provides functional approaches of trustworthiness analysis, modeling, assessment, and prediction for stronger security and support in online learning, highlighting the security deficiencies found in most online collaborative learning systems. The book explores trustworthiness methodologies based on collective intelligence than can overcome these deficiencies. It examines trustworthiness analysis that utilizes the large amounts of data-learning activities generate. In addition, as processing this data is costly, the book offers a parallel processing paradigm that can support learning activities in real-time. The book discusses data visualization methods for managing e-Learning, providing the tools needed to analyze the data collected. Using a case-based approach, the book concludes with models and methodologies for evaluating and validating security in e-Learning systems. Indexing: The books of this series are submitted to EI-Compendex and SCOPUS Provides guidelines for anomaly detection, security analysis, and trustworthiness of data processing Incorporates state-of-the-art, multidisciplinary research on online collaborative learning, social networks, information security, learning management systems, and trustworthiness prediction Proposes a parallel processing approach that decreases the cost of expensive data processing Offers strategies for ensuring against unfair and dishonest assessments Demonstrates solutions using a real-life e-Learning context

The Educational Intelligent Economy


The Educational Intelligent Economy
  • Author : Tavis D. Jules
  • Publisher : Emerald Group Publishing
  • Release : 2019-11-25
  • ISBN : 9781787548541
  • Language : En, Es, Fr & De
GET BOOK

This book examines, from a comparative perspective, the impact of the movement from the so-called knowledge-based economy towards the Intelligent Economy, which is premised upon the application of knowledge. This volume links the advent of this new technological revolution to the world of governance and policy formulation in education.