Introduction to Linear Control Systems Books

Click Get Book Button To Download or read online Introduction to Linear Control Systems books, Available in PDF, ePub, Tuebl and Kindle. This site is like a library, Use search box in the widget to get ebook that you want.

An Introduction to Linear Control Systems


An Introduction to Linear Control Systems
  • Author : Thomas E. Fortmann
  • Publisher : CRC Press
  • Release : 1977-10-01
  • ISBN : 0824765125
  • Language : En, Es, Fr & De
GET BOOK

Introduction to Linear Control Systems


Introduction to Linear Control Systems
  • Author : Yazdan Bavafa-Toosi
  • Publisher : Academic Press
  • Release : 2017-09-19
  • ISBN : 9780128127490
  • Language : En, Es, Fr & De
GET BOOK

Introduction to Linear Control Systems is designed as a standard introduction to linear control systems for all those who one way or another deal with control systems. It can be used as a comprehensive up-to-date textbook for a one-semester 3-credit undergraduate course on linear control systems as the first course on this topic at university. This includes the faculties of electrical engineering, mechanical engineering, aerospace engineering, chemical and petroleum engineering, industrial engineering, civil engineering, bio-engineering, economics, mathematics, physics, management and social sciences, etc. The book covers foundations of linear control systems, their raison detre, different types, modelling, representations, computations, stability concepts, tools for time-domain and frequency-domain analysis and synthesis, and fundamental limitations, with an emphasis on frequency-domain methods. Every chapter includes a part on further readings where more advanced topics and pertinent references are introduced for further studies. The presentation is theoretically firm, contemporary, and self-contained. Appendices cover Laplace transform and differential equations, dynamics, MATLAB and SIMULINK, treatise on stability concepts and tools, treatise on Routh-Hurwitz method, random optimization techniques as well as convex and non-convex problems, and sample midterm and endterm exams. The book is divided to the sequel 3 parts plus appendices. PART I: In this part of the book, chapters 1-5, we present foundations of linear control systems. This includes: the introduction to control systems, their raison detre, their different types, modelling of control systems, different methods for their representation and fundamental computations, basic stability concepts and tools for both analysis and design, basic time domain analysis and design details, and the root locus as a stability analysis and synthesis tool. PART II: In this part of the book, Chapters 6-9, we present what is generally referred to as the frequency domain methods. This refers to the experiment of applying a sinusoidal input to the system and studying its output. There are basically three different methods for representation and studying of the data of the aforementioned frequency response experiment: these are the Nyquist plot, the Bode diagram, and the Krohn-Manger-Nichols chart. We study these methods in details. We learn that the output is also a sinusoid with the same frequency but generally with different phase and magnitude. By dividing the output by the input we obtain the so-called sinusoidal or frequency transfer function of the system which is the same as the transfer function when the Laplace variable s is substituted with . Finally we use the Bode diagram for the design process. PART III: In this part, Chapter 10, we introduce some miscellaneous advanced topics under the theme fundamental limitations which should be included in this undergraduate course at least in an introductory level. We make bridges between some seemingly disparate aspects of a control system and theoretically complement the previously studied subjects. Appendices: The book contains seven appendices. Appendix A is on the Laplace transform and differential equations. Appendix B is an introduction to dynamics. Appendix C is an introduction to MATLAB, including SIMULINK. Appendix D is a survey on stability concepts and tools. A glossary and road map of the available stability concepts and tests is provided which is missing even in the research literature. Appendix E is a survey on the Routh-Hurwitz method, also missing in the literature. Appendix F is an introduction to random optimization techniques and convex and non-convex problems. Finally, appendix G presents sample midterm and endterm exams, which are class-tested several times.

INTRODUCTION TO LINEAR AND DIGITAL CONTROL SYSTEMS


INTRODUCTION TO LINEAR AND DIGITAL CONTROL SYSTEMS
  • Author : ARUN K. GHOSH
  • Publisher : PHI Learning Pvt. Ltd.
  • Release : 2007-05-02
  • ISBN : 8120331249
  • Language : En, Es, Fr & De
GET BOOK

This book presents comprehensive coverage of linear control systems along with an introduction to digital control systems. It is designed for undergraduate courses in control systems taught in departments of electrical engineering, electronics and instrumentation, electronics and communication, instrumentation and control, and computer science and engineering. The text discusses the important concepts of control systems, transfer functions and system components. It describes system stability, employing the Hurwitz–Routh stability criterion, root locus technique, Bode plot, and polar and Nyquist plots. In addition, this student-friendly book features in-depth coverage of controllers, compensators, state-space modelling and discrete time systems. KEY FEATURES •Includes a brief tutorial on MATLAB in an appendix to help students learn how to use it for the analysis and design of control systems. •Provides an abundance of worked-out examples and review questions culled from university examination papers. •Gives answers to selected chapter-end questions at the end of the book.

Linear Feedback Controls


Linear Feedback Controls
  • Author : Mark A. Haidekker
  • Publisher : Newnes
  • Release : 2013-07-25
  • ISBN : 9780124055131
  • Language : En, Es, Fr & De
GET BOOK

The design of control systems is at the very core of engineering. Feedback controls are ubiquitous, ranging from simple room thermostats to airplane engine control. Helping to make sense of this wide-ranging field, this book provides a new approach by keeping a tight focus on the essentials with a limited, yet consistent set of examples. Analysis and design methods are explained in terms of theory and practice. The book covers classical, linear feedback controls, and linear approximations are used when needed. In parallel, the book covers time-discrete (digital) control systems and juxtaposes time-continuous and time-discrete treatment when needed. One chapter covers the industry-standard PID control, and one chapter provides several design examples with proposed solutions to commonly encountered design problems. The book is ideal for upper level students in electrical engineering, mechanical engineering, biological/biomedical engineering, chemical engineering and agricultural and environmental engineering and provides a helpful refresher or introduction for graduate students and professionals Focuses on the essentials of control fundamentals, system analysis, mathematical description and modeling, and control design to guide the reader Illustrates the theory and practical application for each point using real-world examples Strands weave throughout the book, allowing the reader to understand clearly the use and limits of different analysis and design tools

Control System Design


Control System Design
  • Author : Bernard Friedland
  • Publisher : Courier Corporation
  • Release : 2012-03-08
  • ISBN : 9780486135113
  • Language : En, Es, Fr & De
GET BOOK

Introduction to state-space methods covers feedback control; state-space representation of dynamic systems and dynamics of linear systems; frequency-domain analysis; controllability and observability; shaping the dynamic response; more. 1986 edition.