Machine Learning for Biomedical Applications Books

Click Get Book Button To Download or read online Machine Learning for Biomedical Applications books, Available in PDF, ePub, Tuebl and Kindle. This site is like a library, Use search box in the widget to get ebook that you want.

Handbook of Deep Learning in Biomedical Engineering


Handbook of Deep Learning in Biomedical Engineering
  • Author : Valentina Emilia Balas
  • Publisher : Academic Press
  • Release : 2020-11-23
  • ISBN : 9780128230473
  • Language : En, Es, Fr & De
GET BOOK

Deep learning (DL) is a method of machine learning, running over artificial neural networks, that uses multiple layers to extract high-level features from large amounts of raw data. DL methods apply levels of learning to transform input data into more abstract and composite information. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications gives readers a complete overview of the essential concepts of DL and its applications in the field of biomedical engineering. DL has been rapidly developed in recent years, in terms of both methodological constructs and practical applications. DL provides computational models of multiple processing layers to learn and represent data with higher levels of abstraction. It is able to implicitly capture intricate structures of large-scale data and is ideally suited to many of the hardware architectures that are currently available. The ever-expanding amount of data that can be gathered through biomedical and clinical information sensing devices necessitates the development of machine learning and artificial intelligence techniques such as DL and convolutional neural networks to process and evaluate the data. Some examples of biomedical and clinical sensing devices that use DL include computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, single photon emission computed tomography (SPECT), positron emission tomography (PET), magnetic particle imaging, electroencephalography/magnetoencephalography (EE/MEG), optical microscopy and tomography, photoacoustic tomography, electron tomography, and atomic force microscopy. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications provides the most complete coverage of DL applications in biomedical engineering available, including detailed real-world applications in areas such as computational neuroscience, neuroimaging, data fusion, medical image processing, neurological disorder diagnosis for diseases such as Alzheimer’s, attention deficit hyperactivity disorder (ADHD), and autism spectrum disorder (ASD), tumor prediction, and translational multimodal imaging analysis. Presents a comprehensive handbook of the biomedical engineering applications of DL, including computational neuroscience, neuroimaging, time series data such as MRI, functional MRI, CT, EEG, MEG, and data fusion of biomedical imaging data from disparate sources, such as X-Ray/CT. Helps readers understand key concepts in DL applications for biomedical engineering and health care, including manifold learning, classification, clustering, and regression in neuroimaging data analysis. Provides readers with key DL development techniques such as creation of algorithms and application of DL through artificial neural networks and convolutional neural networks. Includes coverage of key application areas of DL such as early diagnosis of specific diseases such as Alzheimer’s, ADHD, and ASD, and tumor prediction through MRI and translational multimodality imaging and biomedical applications such as detection, diagnostic analysis, quantitative measurements, and image guidance of ultrasonography. ~

From Bioinspired Systems and Biomedical Applications to Machine Learning


From Bioinspired Systems and Biomedical Applications to Machine Learning
  • Author : José Manuel Ferrández Vicente
  • Publisher : Springer
  • Release : 2019-07-04
  • ISBN : 9783030196516
  • Language : En, Es, Fr & De
GET BOOK

The two volume set LNCS 11486 and 11487 constitutes the proceedings of the International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2019, held in Almería, Spain,, in June 2019. The total of 103 contributions was carefully reviewed and selected from 190 submissions during two rounds of reviewing and improvement. The papers are organized in two volumes, one on understanding the brain function and emotions, addressing topics such as new tools for analyzing neural data, or detection emotional states, or interfacing with physical systems. The second volume deals with bioinspired systems and biomedical applications to machine learning and contains papers related bioinspired programming strategies and all the contributions oriented to the computational solutions to engineering problems in different applications domains, as biomedical systems, or big data solutions.

Deep Learning for Data Analytics


Deep Learning for Data Analytics
  • Author : Himansu Das
  • Publisher : Academic Press
  • Release : 2020-07-02
  • ISBN : 9780128197646
  • Language : En, Es, Fr & De
GET BOOK

Deep learning, a branch of Artificial Intelligence and machine learning, has led to new approaches to solving problems in a variety of domains including data science, data analytics and biomedical engineering. Deep Learning for Data Analytics: Foundations, Biomedical Applications and Challenges provides readers with a focused approach for the design and implementation of deep learning concepts using data analytics techniques in large scale environments. Deep learning algorithms are based on artificial neural network models to cascade multiple layers of nonlinear processing, which aids in feature extraction and learning in supervised and unsupervised ways, including classification and pattern analysis. Deep learning transforms data through a cascade of layers, helping systems analyze and process complex data sets. Deep learning algorithms extract high level complex data and process these complex sets to relatively simpler ideas formulated in the preceding level of the hierarchy. The authors of this book focus on suitable data analytics methods to solve complex real world problems such as medical image recognition, biomedical engineering, and object tracking using deep learning methodologies. The book provides a pragmatic direction for researchers who wish to analyze large volumes of data for business, engineering, and biomedical applications. Deep learning architectures including deep neural networks, recurrent neural networks, and deep belief networks can be used to help resolve problems in applications such as natural language processing, speech recognition, computer vision, bioinoformatics, audio recognition, drug design, and medical image analysis. Presents the latest advances in Deep Learning for data analytics and biomedical engineering applications. Discusses Deep Learning techniques as they are being applied in the real world of biomedical engineering and data science, including Deep Learning networks, deep feature learning, deep learning toolboxes, performance evaluation, Deep Learning optimization, deep auto-encoders, and deep neural networks Provides readers with an introduction to Deep Learning, along with coverage of deep belief networks, convolutional neural networks, Restricted Boltzmann Machines, data analytics basics, enterprise data science, predictive analysis, optimization for Deep Learning, and feature selection using Deep Learning

Computational Learning Approaches to Data Analytics in Biomedical Applications


Computational Learning Approaches to Data Analytics in Biomedical Applications
  • Author : Khalid Al-Jabery
  • Publisher : Academic Press
  • Release : 2019-11-29
  • ISBN : 9780128144831
  • Language : En, Es, Fr & De
GET BOOK

Computational Learning Approaches to Data Analytics in Biomedical Applications provides a unified framework for biomedical data analysis using varied machine learning and statistical techniques. It presents insights on biomedical data processing, innovative clustering algorithms and techniques, and connections between statistical analysis and clustering. The book introduces and discusses the major problems relating to data analytics, provides a review of influential and state-of-the-art learning algorithms for biomedical applications, reviews cluster validity indices and how to select the appropriate index, and includes an overview of statistical methods that can be applied to increase confidence in the clustering framework and analysis of the results obtained. Includes an overview of data analytics in biomedical applications and current challenges Updates on the latest research in supervised learning algorithms and applications, clustering algorithms and cluster validation indices Provides complete coverage of computational and statistical analysis tools for biomedical data analysis Presents hands-on training on the use of Python libraries, MATLAB® tools, WEKA, SAP-HANA and R/Bioconductor

Deep Learning for Data Analytics


Deep Learning for Data Analytics
  • Author : Himansu Das
  • Publisher : Academic Press
  • Release : 2020-05-29
  • ISBN : 9780128226087
  • Language : En, Es, Fr & De
GET BOOK

Deep learning, a branch of Artificial Intelligence and machine learning, has led to new approaches to solving problems in a variety of domains including data science, data analytics and biomedical engineering. Deep Learning for Data Analytics: Foundations, Biomedical Applications and Challenges provides readers with a focused approach for the design and implementation of deep learning concepts using data analytics techniques in large scale environments. Deep learning algorithms are based on artificial neural network models to cascade multiple layers of nonlinear processing, which aids in feature extraction and learning in supervised and unsupervised ways, including classification and pattern analysis. Deep learning transforms data through a cascade of layers, helping systems analyze and process complex data sets. Deep learning algorithms extract high level complex data and process these complex sets to relatively simpler ideas formulated in the preceding level of the hierarchy. The authors of this book focus on suitable data analytics methods to solve complex real world problems such as medical image recognition, biomedical engineering, and object tracking using deep learning methodologies. The book provides a pragmatic direction for researchers who wish to analyze large volumes of data for business, engineering, and biomedical applications. Deep learning architectures including deep neural networks, recurrent neural networks, and deep belief networks can be used to help resolve problems in applications such as natural language processing, speech recognition, computer vision, bioinoformatics, audio recognition, drug design, and medical image analysis. Presents the latest advances in Deep Learning for data analytics and biomedical engineering applications. Discusses Deep Learning techniques as they are being applied in the real world of biomedical engineering and data science, including Deep Learning networks, deep feature learning, deep learning toolboxes, performance evaluation, Deep Learning optimization, deep auto-encoders, and deep neural networks Provides readers with an introduction to Deep Learning, along with coverage of deep belief networks, convolutional neural networks, Restricted Boltzmann Machines, data analytics basics, enterprise data science, predictive analysis, optimization for Deep Learning, and feature selection using Deep Learning