Modelling, Operation and Analysis of DC Grids Books

Click Get Book Button To Download or read online Modelling, Operation and Analysis of DC Grids books, Available in PDF, ePub, Tuebl and Kindle. This site is like a library, Use search box in the widget to get ebook that you want.

Modeling Operation and Analysis of DC Grids


Modeling  Operation  and Analysis of DC Grids
  • Author : Alejandro Garces
  • Publisher : Academic Press
  • Release : 2021-07-01
  • ISBN : 9780128221020
  • Language : En, Es, Fr & De
GET BOOK

Modeling, Operation, and Analysis of DC Grids presents a unified vision of direct current grids with their core analysis techniques, uniting power electronics, power systems, and multiple scales of applications. Part one presents high power applications such as HVDC transmission for wind energy, faults and protections in HVDC lines, stability analysis and inertia emulation. The second part addresses current applications in low voltage such as microgrids, power trains and aircraft applications. All chapters are self-contained with numerical and experimental analysis. Provides a unified, coherent presentation of DC grid analysis based on modern research in power systems, power electronics, microgrids and MT-HVDC transmission Covers multiple scales of applications in one location, addressing DC grids in electric vehicles, microgrids, DC distribution, multi-terminal HVDC transmission and supergrids Supported by a unified set of MATLAB and Simulink test systems designed for application scenarios

Multi terminal Direct Current Grids


Multi terminal Direct Current Grids
  • Author : Nilanjan Chaudhuri
  • Publisher : John Wiley & Sons
  • Release : 2014-09-09
  • ISBN : 9781118960530
  • Language : En, Es, Fr & De
GET BOOK

A generic DC grid model that is compatible with the standard AC system stability model is presented and used to analyse the interaction between the DC grid and the host AC systems. A multi-terminal DC (MTDC) grid interconnecting multiple AC systems and offshore energy sources (e.g. wind farms) across the nations and continents would allow effective sharing of intermittent renewable resources and open market operation for secure and cost-effective supply of electricity. However, such DC grids are unprecedented with no operational experience. Despite lots of discussions and specific visions for setting up such MTDC grids particularly in Europe, none has yet been realized in practice due to two major technical barriers: Lack of proper understanding about the interaction between a MTDC grid and the surrounding AC systems. Commercial unavailability of efficient DC side fault current interruption technology for conventional voltage sourced converter systems This book addresses the first issue in details by presenting a comprehensive modeling, analysis and control design framework. Possible methodologies for autonomous power sharing and exchange of frequency support across a MTDC grid and their impact on overall stability is covered. An overview of the state-of-the-art, challenges and on-going research and development initiatives for DC side fault current interruption is also presented.

VSC FACTS HVDC


VSC FACTS HVDC
  • Author : Enrique Acha
  • Publisher : John Wiley & Sons
  • Release : 2019-04-01
  • ISBN : 9781118965801
  • Language : En, Es, Fr & De
GET BOOK

An authoritative reference on the new generation of VSC-FACTS and VSC-HVDC systems and their applicability within current and future power systems VSC-FACTS-HVDC and PMU: Analysis, Modelling and Simulation in Power Grids provides comprehensive coverage of VSC-FACTS and VSC-HVDC systems within the context of high-voltage Smart Grids modelling and simulation. Readers are presented with an examination of the advanced computer modelling of the VSC-FACTS and VSC-HVDC systems for steady-state, optimal solutions, state estimation and transient stability analyses, including numerous case studies for the reader to gain hands-on experience in the use of models and concepts. Key features: Wide-ranging treatment of the VSC achieved by assessing basic operating principles, topology structures, control algorithms and utility-level applications. Detailed advanced models of VSC-FACTS and VSC-HVDC equipment, suitable for a wide range of power network-wide studies, such as power flows, optimal power flows, state estimation and dynamic simulations. Contains numerous case studies and practical examples, including cases of multi-terminal VSC-HVDC systems. Includes a companion website featuring MATLAB software and Power System Computer Aided Design (PSCAD) scripts which are provided to enable the reader to gain hands-on experience. Detailed coverage of electromagnetic transient studies of VSC-FACTS and VSC-HVDC systems using the de-facto industry standard PSCAD /EMTDC simulation package. An essential guide for utility engineers, academics, and research students as well as industry managers, engineers in equipment design and manufacturing, and consultants.

High Voltage Direct Current Transmission


High Voltage Direct Current Transmission
  • Author : Dragan Jovcic
  • Publisher : John Wiley & Sons
  • Release : 2019-07-01
  • ISBN : 9781119566618
  • Language : En, Es, Fr & De
GET BOOK

Presents the latest developments in switchgear and DC/DC converters for DC grids, and includes substantially expanded material on MMC HVDC This newly updated edition covers all HVDC transmission technologies including Line Commutated Converter (LCC) HVDC; Voltage Source Converter (VSC) HVDC, and the latest VSC HVDC based on Modular Multilevel Converters (MMC), as well as the principles of building DC transmission grids. Featuring new material throughout, High Voltage Direct Current Transmission: Converters, Systems and DC Grids, 2nd Edition offers several new chapters/sections including one on the newest MMC converters. It also provides extended coverage of switchgear, DC grid protection and DC/DC converters following the latest developments on the market and in research projects. All three HVDC technologies are studied in a wide range of topics, including: the basic converter operating principles; calculation of losses; system modelling, including dynamic modelling; system control; HVDC protection, including AC and DC fault studies; and integration with AC systems and fundamental frequency analysis. The text includes: A chapter dedicated to hybrid and mechanical DC circuit breakers Half bridge and full bridge MMC: modelling, control, start-up and fault management A chapter dedicated to unbalanced operation and control of MMC HVDC The advancement of protection methods for DC grids Wideband and high-order modeling of DC cables Novel treatment of topics not found in similar books, including SimPowerSystems models and examples for all HVDC topologies hosted by the 1st edition companion site. High Voltage Direct Current Transmission: Converters, Systems and DC Grids, 2nd Edition serves as an ideal textbook for a graduate-level course or a professional development course.

HVDC Grids


HVDC Grids
  • Author : Dirk Van Hertem
  • Publisher : John Wiley & Sons
  • Release : 2016-02-23
  • ISBN : 9781119115236
  • Language : En, Es, Fr & De
GET BOOK

This book discusses HVDC grids based on multi-terminal voltage-source converters (VSC), which is suitable for the connection of offshore wind farms and a possible solution for a continent wide overlay grid. HVDC Grids: For Offshore and Supergrid of the Future begins by introducing and analyzing the motivations and energy policy drives for developing offshore grids and the European Supergrid. HVDC transmission technology and offshore equipment are described in the second part of the book. The third part of the book discusses how HVDC grids can be developed and integrated in the existing power system. The fourth part of the book focuses on HVDC grid integration, in studies, for different time domains of electric power systems. The book concludes by discussing developments of advanced control methods and control devices for enabling DC grids. Presents the technology of the future offshore and HVDC grid Explains how offshore and HVDC grids can be integrated in the existing power system Provides the required models to analyse the different time domains of power system studies: from steady-state to electromagnetic transients This book is intended for power system engineers and academics with an interest in HVDC or power systems, and policy makers. The book also provides a solid background for researchers working with VSC-HVDC technologies, power electronic devices, offshore wind farm integration, and DC grid protection.