Nanostructured Materials for Visible-Light-Photocatalysis Books

Click Get Book Button To Download or read online Nanostructured Materials for Visible-Light-Photocatalysis books, Available in PDF, ePub, Tuebl and Kindle. This site is like a library, Use search box in the widget to get ebook that you want.

Nanostructured Materials for Visible Light Photocatalysis


Nanostructured Materials for Visible Light Photocatalysis
  • Author : Arpan Kumar Nayak
  • Publisher : Elsevier
  • Release : 2021-10-01
  • ISBN : 9780128230503
  • Language : En, Es, Fr & De
GET BOOK

Nanostructured Materials for Visible-Light-Photocatalysis describes the various methods of synthesizing different classes of nanostructured materials that are used as photocatalysts for the degradation of organic hazardous dyes under visible light irradiation. The first two chapters include a general introduction, basic principles and mechanisms of nanomaterials for visible-light-photocatalysis. Recent advances in carbon, transition metal oxide, and chalcogenides-based nanostructured materials for visible light photocatalysis are discussed in Chapters 3 to 5. Chapters VI and VII describe the role of sulphides, carbides, nitrides, and rare earth-based nanostructured-based materials over visible-light-photocatalysis. The above chapters also explain the characteristics, synthesis, and fabrication of photocatalysts. The role of doping, composites, defects, different facets, and morphology of nanostructured materials for efficient dye removal under visible-light irradiation, are explained in Chapters VIII to XII. Large-scale production of nanostructured materials, used for industrial scales and their problems, including solutions, are discussed in Chapters XIII and XIV. In the conclusion of the book, the challenges in present photocatalytic research, research gaps, and the future scope of nanostructured materials over environmental hazard remediation under visible-light, as well as solar light harvesting are addressed. This book presents a valuable reference to researchers that enables them to learn more about designing advanced nanostructured materials for waste water treatment and visible-light irradiation. Covers all the recent developments of nanostructured photocatalytic materials Provides a clear overview of the mechanism of visible light photocatalysis and the controlled synthesis of nanostructured materials Assesses the major challenges of creating visible light photocatalysis systems at the nanoscale

Synthesis and Characterization of Some Nanostructured Materials for Visible Light driven Photo Processes


Synthesis and Characterization of Some Nanostructured Materials for Visible Light driven Photo Processes
  • Author : Rania Elhadi Adam
  • Publisher : Linköping University Electronic Press
  • Release : 2020-03-18
  • ISBN : 9789179298784
  • Language : En, Es, Fr & De
GET BOOK

Nanostructured materials for visible light driven photo-processes such as photodegradation of organic pollutants and photoelectrochemical (PEC) water oxidation for hydrogen production are very attractive because of the positive impact on the environment. Metal oxides-based nanostructures are widely used in these photoprocesses due to their unique properties. But single nanostructured metal oxide material might suffer from low efficiency and instability in aqueous solutions under visible light. These facts make it important to have an efficient and reliable nanocomposite for the photo-processes. The combination of different nanomaterials to form a composite configuration can produce a material with new properties. The new properties which are due to the synergetic effect, are a combination of the properties of all the counterparts of the nanocomposite. Zinc oxides (ZnO) have unique optical and electrical properties which grant it to be used in optoelectronics, sensors, solar cells, nanogenerators, and photocatalysis activities. Although ZnO absorbs visible light from the sun due to the deep level band, it mainly absorbs ultraviolet wavelengths which constitute a small portion of the whole solar spectrum range. Also, ZnO has a problem with the high recombination rate of the photogenerated electrons. These problems might reduce its applicability to the photo-process. Therefore, our aim is to develop and investigate different nanocomposites materials based on the ZnO nanostructures for the enhancement of photocatalysis processes using the visible solar light as a green source of energy. Two photo-processes were applied to examine the developed nanocomposites through photocatalysis: (1) the photodegradation of organic dyes, (2) PEC water splitting. In the first photo-process, we used the ZnO nanoparticles (NPs), Magnesium (Mg)-doped ZnO NPs, and plasmonic ZnO/graphene-based nanocomposite for the decomposition of some organic dyes that have been used in industries. For the second photo-process, ZnO photoelectrode composite with different silver-based semiconductors to enhance the performance of the ZnO photoelectrode was used for PEC reaction analysis to perform water splitting. The characterization and photocatalysis experiment results showed remarkable enhancement in the photocatalysis efficiency of the synthesized nanocomposites. The observed improved properties of the ZnO are due to the synergetic effects are caused by the addition of the other nanomaterials. Hence, the present thesis attends to the synthesis and characterization of some nanostructured materials composite with ZnO that are promising candidates for visible light-driven photo-processes.

Nanostructured Materials for Visible Light Photocatalysis


Nanostructured Materials for Visible Light Photocatalysis
  • Author : Arpan Kumar Nayak
  • Publisher : Elsevier
  • Release : 2021-10-15
  • ISBN : 0128230185
  • Language : En, Es, Fr & De
GET BOOK

Nanostructured Materials for Visible-Light-Photocatalysis describes the various methods of synthesizing different classes of nanostructured materials that are used as photocatalysts for the degradation of organic hazardous dyes under visible light irradiation. The first two chapters include a general introduction, basic principles and mechanisms of nanomaterials for visible-light-photocatalysis. Recent advances in carbon, transition metal oxide, and chalcogenides-based nanostructured materials for visible light photocatalysis are discussed in Chapters 3 to 5. Chapters VI and VII describe the role of sulphides, carbides, nitrides, and rare earth-based nanostructured-based materials over visible-light-photocatalysis. The above chapters also explain the characteristics, synthesis, and fabrication of photocatalysts. The role of doping, composites, defects, different facets, and morphology of nanostructured materials for efficient dye removal under visible-light irradiation, are explained in Chapters VIII to XII. Large-scale production of nanostructured materials, used for industrial scales and their problems, including solutions, are discussed in Chapters XIII and XIV. In the conclusion of the book, the challenges in present photocatalytic research, research gaps, and the future scope of nanostructured materials over environmental hazard remediation under visible-light, as well as solar light harvesting are addressed. This book presents a valuable reference to researchers that enables them to learn more about designing advanced nanostructured materials for waste water treatment and visible-light irradiation. Covers all the recent developments of nanostructured photocatalytic materials Provides a clear overview of the mechanism of visible light photocatalysis and the controlled synthesis of nanostructured materials Assesses the major challenges of creating visible light photocatalysis systems at the nanoscale

Visible Light Active Photocatalysis


Visible Light Active Photocatalysis
  • Author : Srabanti Ghosh
  • Publisher : John Wiley & Sons
  • Release : 2018-03-23
  • ISBN : 9783527808144
  • Language : En, Es, Fr & De
GET BOOK

A comprehensive and timely overview of this important and hot topic, with special emphasis placed on environmental applications and the potential for solar light harvesting. Following introductory chapters on environmental photocatalysis, water splitting, and applications in synthetic chemistry, further chapters focus on the synthesis and design of photocatalysts, solar energy conversion, and such environmental aspects as the removal of water pollutants, photocatalytic conversion of CO2. Besides metal oxide-based photocatalysts, the authors cover other relevant material classes including carbon-based nanomaterials and novel hybrid materials. Chapters on mechanistic aspects, computational modeling of photocatalysis and Challenges and perspectives of solar reactor design for industrial applications complete this unique survey of the subject. With its in-depth discussions ranging from a comprehensive understanding to the engineering of materials and applied devices, this is an invaluable resource for a range of disciplines.

Nanostructured Photocatalysts


Nanostructured Photocatalysts
  • Author : Rabah Boukherroub
  • Publisher : Elsevier
  • Release : 2020-06-06
  • ISBN : 9780128178379
  • Language : En, Es, Fr & De
GET BOOK

Nanostructured Photocatalysts: From Materials to Applications in Solar Fuels and Environmental Remediation addresses the different properties of nanomaterials-based heterogeneous photocatalysis. Heterogeneous nanostructured photocatalysis represents an interesting and viable technique to address issues of climate change and global energy supply. Sustainable hydrogen (H2) fuel production from water via semiconductor photocatalysis, driven by solar energy, is regarded as a viable and sustainable solution to address increasing energy and environmental issues. Similarly, photocatalytic reduction of CO2 with water for the production of hydrocarbons could also be a viable solution. Sections cover band gap tuning, high surface area, the short diffusion path of carriers, and more. Introduces the utilization of nanostructured materials in heterogeneous photocatalysis for hydrogen fuel production via water splitting Explains preparation techniques for different nanomaterials and hybrid nanocomposites, enabling improved sunlight absorption efficiency and enhanced charge separation Assesses the challenges that need to be addressed before this technology can be practically implemented, particularly of identifying cost-effective nanophotocatalysts