Plant Small RNA Books

Click Get Book Button To Download or read online Plant Small RNA books, Available in PDF, ePub, Tuebl and Kindle. This site is like a library, Use search box in the widget to get ebook that you want.

Plant Small RNA


Plant Small RNA
  • Author : Praveen Guleria
  • Publisher : Academic Press
  • Release : 2020-02-19
  • ISBN : 9780128173367
  • Language : En, Es, Fr & De
GET BOOK

Plant Small RNA: Biogenesis, Regulation and Application describes the biosynthesis of small RNA in plant systems. With an emphasis on the various molecular mechanisms affected by small RNA and their applications in supporting plant growth and survival, this books presents the basics and most recent advancements in small RNA mediated plant genomics, metabolomics, proteomics and physiology. In addition, it emphasizes the various molecular mechanisms affected by small RNA and their applications in supporting plant growth and survival. Final sections cover the most recent advancements in small RNA mediated plant genomics, metabolomics, proteomics and physiology. Presents foundational information about small RNA biology and regulation in plants Includes small RNA pathway advances Describes the application and scope of small RNA technology for agricultural stability

Plant Small RNA


Plant Small RNA
  • Author : Praveen Guleria
  • Publisher : Academic Press
  • Release : 2020-02
  • ISBN : 012817112X
  • Language : En, Es, Fr & De
GET BOOK

Plant Small RNA: Biogenesis, Regulation and Application describes the biosynthesis of small RNA in plant systems. With an emphasis on the various molecular mechanisms affected by small RNA and their applications in supporting plant growth and survival, this books presents the basics and most recent advancements in small RNA mediated plant genomics, metabolomics, proteomics and physiology. In addition, it emphasizes the various molecular mechanisms affected by small RNA and their applications in supporting plant growth and survival. Final sections cover the most recent advancements in small RNA mediated plant genomics, metabolomics, proteomics and physiology. Presents foundational information about small RNA biology and regulation in plants Includes small RNA pathway advances Describes the application and scope of small RNA technology for agricultural stability

Discovery of Endogenous Plant Small RNAs and Their Role in Trans species Gene Regulation


Discovery of Endogenous Plant Small RNAs and Their Role in Trans species Gene Regulation
  • Author : Saima Shahid
  • Publisher :
  • Release : 2017
  • ISBN : OCLC:1021231551
  • Language : En, Es, Fr & De
GET BOOK

Endogenous small RNAs (20 - 24 nt) engage in complex regulation of gene expression and thus shape and direct plant development, defense, stress response and the epigenome. Based on their biogenesis and functions, endogenous small RNAs can be divided into many categories and subcategories. MicroRNAs (miRNAs) represent the most well-annotated type of small RNAs that regulate gene expression via transcript cleavage or translational repression. However, MIRNAs only contribute to a minor fraction of all the expressed small RNAs in plants. Small RNA genes other than MIRNAs remain poorly annotated, which limits complete elucidation of their regulatory roles. Furthermore, inconsistent MIRNA discovery methodologies in published studies have resulted in widespread discrepancies among existing annotations. To address these issues, and to improve current understanding of small RNA gene functions, we developed robust methodologies for de novo annotation of plant small RNA genes. Our comprehensive small RNA loci discovery based on deep sequencing data and small RNA biogenesis patterns provided refinement of existing MIRNA annotations and their functions in the basal land plant Physcomitrella patens. We also identified numerous P. patens siRNA loci producing almost equal mixture of 23-24 nt small RNAs, confirming that the heterochromatic siRNA pathway is present in the bryophyte lineage. Our de novo annotation of small RNA genes in Amborella trichopoda, the basal-most lineage of flowering plants, revealed a striking predominance of lineage-specific, intronic 23-24 nt MIRNAs and hairpin RNAs that has not been reported in any plants so far. Most of these non-canonical MIRNAs lacked easily identifiable targets in the transcriptome, suggesting these may have functions other than sequence-dependent targeting. In the monocot rice, 24 nt long intronic miRNAs function in RNA dependent DNA methylation. It is possible that A. trichopoda 23-24 nt MIRNAs function in a similar way, and such non-canonical miRNA pathways may have been retained in specific lineages of flowering plants. At least 19 A. trichopoda miRNA families were broadly conserved across land plants, and most of these also had conserved targets. These findings confirmed the presence of all major small RNA gene classes in the basal lineage of flowering plants, as well as the existence of species-specific diversities in small RNA populations expressed in non-model plants. Finally, we explored the potential exchange of endogenous small RNAs between parasitic plants and their hosts. Parasitic plants intimately connect to their hosts through a specialized feeding organ called haustoria. Bidirectional exchange of thousands of mRNAs between the stem parasite C. campestris and its hosts have been previously reported. Host-induced gene silencing has also been shown in several parasitic species including Cuscuta and Triphysaria versicolor (root parasite). De novo annotation of small RNA genes from C. campestris - A. thaliana associations revealed an unprecedented abundance of 22 nt parasite miRNAs in the haustorial interface. Several of these interface-induced C. campestris miRNAs directed slicing of six host mRNAs and triggered secondary siRNA production specifically in interface. Among these targets, Botrytis Induced Kinase 1 (BIK1) encodes a receptor-like cytoplasmic kinase and functions in in plant immunity. Another target, Sieve-Element-Occlusion-Related 1 (SEOR1) encodes a protein thought to be involved in sealing phloem sieve elements after wounding. Additionally, mRNAs encoding three auxin receptors, TIR1, AFB2, and AFB3 were targeted by a C. campestris miRNA and showed a unique pattern of secondary siRNA production in parasite-host interface. Such secondary siRNA production depended on host machinery for RNA interference. Growth of C. campestris on seor1 mutant significantly increased parasite biomass accumulation compared to wild type. Furthermore, interface-induced parasite miRNA-directed cleavage of host TIR1/AFB was also detected in C. campestris -N. benthamiana. Our findings thus confirm conserved trans-species targeting by C. campestris miRNAs across the haustorial interface, and the potential roles of these miRNAs as virulence factors in plant parasitism.

Plant Genomes


Plant Genomes
  • Author : Jean-Nicolas Volff
  • Publisher : Karger Medical and Scientific Publishers
  • Release : 2008-01-01
  • ISBN : 9783805584913
  • Language : En, Es, Fr & De
GET BOOK

Recent major advances in the field of comparative genomics and cytogenomics of plants, particularly associated with the completion of ambitious genome projects, have uncovered astonishing facets of the architecture and evolutionary history of plant genomes. The aim of this book was to review these recent developments as well as their implications in our understanding of the mechanisms which drive plant diversity. New insights into the evolution of gene functions, gene families and genome size are presented, with particular emphasis on the evolutionary impact of polyploidization and transposable elements. Knowledge on the structure and evolution of plant sex chromosomes, centromeres and microRNAs is reviewed and updated. Taken together, the contributions by internationally recognized experts present a panoramic overview of the structural features and evolutionary dynamics of plant genomes.This volume of Genome Dynamics will provide researchers, teachers and students in the fields of biology and agronomy with a valuable source of current knowledge on plant genomes.

Non Coding RNAs in Plants


Non Coding RNAs in Plants
  • Author : Volker A. Erdmann
  • Publisher : Springer Science & Business Media
  • Release : 2011-07-20
  • ISBN : 3642194540
  • Language : En, Es, Fr & De
GET BOOK

In the most recent years, each of the RNA silencing pathways of plants have appeared to generate ncRNAs with dedicated functions, specialized biological activities and specific functional scopes. RNA silencing plays a crucial role in coordinating the expression, stability, protection and inheritance of eukaryotic genomes. It compromises several mechanisms, that invariably depend on core small non coding RNAs and that achieve dedicated sequence-specific functions. RNA silencing has been recognized to carry critical developmental, stress-response and bodyguard functions be coordinating the expression, protection, stability and inheritance of virtually all eukaryotic genomes. Thus, the ncRNAs encompass a wide set of mechanisms that achieve specialized functions.