Practical Micromechanics of Composite Materials Books

Click Get Book Button To Download or read online Practical Micromechanics of Composite Materials books, Available in PDF, ePub, Tuebl and Kindle. This site is like a library, Use search box in the widget to get ebook that you want.

Practical Micromechanics of Composite Materials


Practical Micromechanics of Composite Materials
  • Author : Jacob Aboudi
  • Publisher : Butterworth-Heinemann
  • Release : 2021-07-01
  • ISBN : 9780128206386
  • Language : En, Es, Fr & De
GET BOOK

Practical Micromechanics of Composite Materials provides an accessible treatment of micromechanical theories for the analysis and design of multi-phased composites. Written with both students and practitioners in mind and coupled with a fully functional MATLAB code to enable the solution of technologically relevant micromechanics problems, the book features an array of illustrative example problems and exercises highlighting key concepts and integrating the MATLAB code. The MATLAB scripts and functions empower readers to enhance and create new functionality tailored to their needs, and the book and code highly complement one another. The book presents classical lamination theory and then proceeds to describe how to obtain effective anisotropic properties of a unidirectional composite (ply) via micromechanics and multiscale analysis. Calculation of local fields via mechanical and thermal strain concentration tensors is presented in a unified way across several micromechanics theories. The importance of these local fields is demonstrated through the determination of consistent Margins of Safety (MoS) and failure envelopes for thermal and mechanical loading. Finally, micromechanics-based multiscale progressive damage is discussed and implemented in the accompanying MATLAB code. Emphasizes appropriate application of micromechanics theories to composite behavior Addresses multiple popular micromechanics theories, which are provided in MATLAB Discusses stresses and strains resulting from realistic thermal and mechanical loading Includes availability of solution manual for professors using the book in the classroom

Micromechanics in Practice


Micromechanics in Practice
  • Author : Michal Šejnoha
  • Publisher : WIT Press
  • Release : 2013
  • ISBN : 9781845646820
  • Language : En, Es, Fr & De
GET BOOK

The book will concentrate on the application of micromechanics to the analysis of practical engineering problems. Both classical composites represented by carbon/carbon textile laminates and applications in Civil Engineering including asphalts and masonry structures will be considered. A common denominator of these considerably distinct material systems will be randomness of their internal structure. Also, owing to their complexity, all material systems will be studied on multiple scales. Since real engineering, rather than academic, problems are of the main interest, these scales will be treated independently from each other on the grounds of fully uncoupled multi-scale analysis. Attention will be limited to elastic and viscoelastic behaviour and to the linear heat transfer analysis. To achieve this, the book will address two different approaches to the homogenization of systems with random microstructures. In particular, classical averaging schemes based on the Eshelby solution of a solitary inclusion in an infinite medium represented by the Hashin-Shtrikman variational principles or by considerably simpler and more popular Mori-Tanaka method will be compared to detailed finite element simulations of a certain representative volume element (RVE) representing accommodated geometrical details of respective microstructures. These are derived by matching material statistics such as the one- and two-point probability functions of real and artificial microstructures. The latter one is termed the statistically equivalent periodic unit cell owing to the assumed periodic arrangement of reinforcements (carbon fibres, carbon fibre tows, stones or masonry bricks) in a certain matrix (carbon matrix, asphalt mastic, mortar). Other types of materials will be introduced in the form of exercises with emphases to the application of the Mori-Tanaka method in the framework of the previously mentioned uncoupled multi-scale analysis

Micromechanics with Mathematica


Micromechanics with Mathematica
  • Author : Seiichi Nomura
  • Publisher : John Wiley & Sons
  • Release : 2016-05-02
  • ISBN : 9781119945031
  • Language : En, Es, Fr & De
GET BOOK

Demonstrates the simplicity and effectiveness of Mathematica as the solution to practical problems in composite materials. Designed for those who need to learn how micromechanical approaches can help understand the behaviour of bodies with voids, inclusions, defects, this book is perfect for readers without a programming background. Thoroughly introducing the concept of micromechanics, it helps readers assess the deformation of solids at a localized level and analyse a body with microstructures. The author approaches this analysis using the computer algebra system Mathematica, which facilitates complex index manipulations and mathematical expressions accurately. The book begins by covering the general topics of continuum mechanics such as coordinate transformations, kinematics, stress, constitutive relationship and material symmetry. Mathematica programming is also introduced with accompanying examples. In the second half of the book, an analysis of heterogeneous materials with emphasis on composites is covered. Takes a practical approach by using Mathematica, one of the most popular programmes for symbolic computation Introduces the concept of micromechanics with worked-out examples using Mathematica code for ease of understanding Logically begins with the essentials of the topic, such as kinematics and stress, before moving to more advanced areas Applications covered include the basics of continuum mechanics, Eshelby's method, analytical and semi-analytical approaches for materials with inclusions (composites) in both infinite and finite matrix media and thermal stresses for a medium with inclusions, all with Mathematica examples Features a problem and solution section on the book’s companion website, useful for students new to the programme

Fundamentals of Metal Matrix Composites


Fundamentals of Metal Matrix Composites
  • Author : Subra Suresh
  • Publisher : Elsevier
  • Release : 2013-10-22
  • ISBN : 9780080523712
  • Language : En, Es, Fr & De
GET BOOK

`Metal-Matrix Composites' are being used or considered for use in a variety of applications in the automotive, aerospace and sporting goods industries. This book contains sixteen chapters, all written by leading experts in the filed, which focus on the processing, microstructure and characterization, mechanics and micromechanics of deformation, mechanics and micromechanics of damage and fracture, and practical applications of a wide variety of metal composites. A particularly noteworthy feature of this authoritative volume is its collection of state-of-the-art reviews of the relationships among processing, microstructural evolution, micromechanics of deformation and overall mechanical response.

Micromechanics of Composite Materials


Micromechanics of Composite Materials
  • Author : Jacob Aboudi
  • Publisher : Butterworth-Heinemann
  • Release : 2012-11-01
  • ISBN : 9780123970350
  • Language : En, Es, Fr & De
GET BOOK

Summary: A Generalized Multiscale Analysis Approach brings together comprehensive background information on the multiscale nature of the composite, constituent material behaviour, damage models and key techniques for multiscale modelling, as well as presenting the findings and methods, developed over a lifetime's research, of three leading experts in the field. The unified approach presented in the book for conducting multiscale analysis and design of conventional and smart composite materials is also applicable for structures with complete linear and nonlinear material behavior, with numerous applications provided to illustrate use. Modeling composite behaviour is a key challenge in research and industry; when done efficiently and reliably it can save money, decrease time to market with new innovations and prevent component failure.