Pumped Hydro Energy Storage for Hybrid Systems Books

Click Get Book Button To Download or read online Pumped Hydro Energy Storage for Hybrid Systems books, Available in PDF, ePub, Tuebl and Kindle. This site is like a library, Use search box in the widget to get ebook that you want.

Pumped Hydro Energy Storage for Hybrid Systems


Pumped Hydro Energy Storage for Hybrid Systems
  • Author : Amos Kabo-Bah
  • Publisher : Academic Press
  • Release : 2021-02-15
  • ISBN : 0128188537
  • Language : En, Es, Fr & De
GET BOOK

Pumped Hydro Energy Storage for Hybrid Systems takes a practical approach in its presentation of characteristic features, planning, implementation aspects, and techno-economic issues surrounding PHES. The book discusses the importance of pumped hydro energy storage and its role in load balancing, peak load shaving, grid stability and hybrid energy systems deployment. In addition, it analyzes the architecture and process description of different kinds of PHES, both stablished and upcoming, including technical specificities, performance characteristics, commercial maturity, cost, and relevant information on the typical components of PHES, such as hydraulic system of intakes, bottom outlets, hydraulic turbines, pumps, penstock, and electric generator. The authors look into the existing market structure for PHES and offer a techno-economic assessment according to two different concepts that consider capital costs, annual operations costs and benefits. Case studies of these analysis as well as of the systems themselves are examined, and the advantages and disadvantages of different applications are discussed. This book is a unique reference for energy researchers and energy engineers who look to design, develop, up-scale and optimize pumped hydro storage for better electricity generation. Academic and industry researchers specializing in cleaner production, regional sustainability, and sustainable development will also find here a helpful resource. Provides a comprehensive overview of pumped-hydro storage systems and other uses of hydropower in hybrid energy systems Offers a practical approach that includes case studies to present in-depth information on project development and techno-economic challenges, including design, costs, performance and limitations of hybrid pumped hydro systems Explores pathways for hydropower energy storage systems optimization for better electricity generation

Thermal Mechanical and Hybrid Chemical Energy Storage Systems


Thermal  Mechanical  and Hybrid Chemical Energy Storage Systems
  • Author : Klaus Brun
  • Publisher : Academic Press
  • Release : 2020-09-24
  • ISBN : 9780128198940
  • Language : En, Es, Fr & De
GET BOOK

Thermal, Mechanical, and Hybrid Chemical Energy Storage Systems provides unique and comprehensive guidelines on all non-battery energy storage technologies, including their technical and design details, applications, and how to make decisions and purchase them for commercial use. The book covers all short and long-term electric grid storage technologies that utilize heat or mechanical potential energy to store electricity, including their cycles, application, advantages and disadvantages, such as round-trip-efficiency, duration, cost and siting. Also discussed are hybrid technologies that utilize hydrogen as a storage medium aside from battery technology. Readers will gain substantial knowledge on all major mechanical, thermal and hybrid energy storage technologies, their market, operational challenges, benefits, design and application criteria. Provide a state-of-the-art, ongoing R&D review Covers comprehensive energy storage hybridization tactics Features standalone chapters containing technology advances, design and applications

Hybrid Energy System Models


Hybrid Energy System Models
  • Author : Asmae Berrada
  • Publisher : Academic Press
  • Release : 2020-12-04
  • ISBN : 9780128214046
  • Language : En, Es, Fr & De
GET BOOK

Hybrid Energy System Models presents a number of techniques to model a large variety of hybrid energy systems in all aspects of sizing, design, operation, economic dispatch, optimization and control. The book's authors present a number of new methods to model hybrid energy systems and several renewable energy systems, including photovoltaic, solar plus wind and hydropower, energy storage, and combined heat and power systems. With critical modeling examples, global case studies and techno-economic modeling integrated in every chapter, this book is essential to understanding the development of affordable energy systems globally, particularly from renewable resources. With a detailed overview and a comparison of hybrid energy systems used in different regions, as well as innovative hybrid energy system designs covered, this book is useful for practicing power and energy engineers needing answers for what factors to consider when modeling a hybrid energy system and what tools are available to model hybrid systems. Combines research on several renewable energy systems, energy storage, and combined heat and power systems into a single informative resource on hybrid energy systems Includes significant global case studies of current and novel modeling techniques for comparison Covers numerical simulations of hybrid systems energy modeling and applications

Pumps as Turbines


Pumps as Turbines
  • Author : Armando Carravetta
  • Publisher : Springer
  • Release : 2017-10-24
  • ISBN : 9783319675077
  • Language : En, Es, Fr & De
GET BOOK

This book provides users, pump manufactures, engineers, researchers and students with extensive information about pump’s behavior in reverse operation. It reports on cutting-edge methods for selecting the proper PAT and improving PAT’s efficiency, discusses PAT’s reliability, economic issues and environmental impact as well. The book describes in detail electromechanical equipment of PAT systems, their installation and operation, and gives important practical insight into the use of PAT in water transmission and distribution systems, as part of thermal power plants and cooling systems, in oil distribution systems and other systems as well. It reports on different types on PAT control modes as well as on numerical methods useful for PAT analysis and implementation. All in all, the book represents a comprehensive practice-oriented reference-guide to design engineers, as well as PAT general users and manufactures. It also provides researchers with extensive technical information on the use of PAT thus fostering new discussions and ideas to improve current methods and cope with future challenges.

Stand Alone and Hybrid Wind Energy Systems


Stand Alone and Hybrid Wind Energy Systems
  • Author : J K Kaldellis
  • Publisher : Elsevier
  • Release : 2010-07-27
  • ISBN : 9781845699628
  • Language : En, Es, Fr & De
GET BOOK

Wind power is fast becoming one of the leading renewable energy sources worldwide, not only from large scale wind farms but also from the increasing penetration of stand-alone and hybrid wind energy systems. These systems are primarily of benefit in small-scale applications, especially where there is no connection to a central electricity network, and where there are limited conventional fuel resources but available renewable energy resources. By applying appropriate planning, systems selection and sizing, including the integration of energy storage devices to mitigate variable energy generation patterns, theses systems can supply secure reliable and economic power to remote locations and distributed micro-grids. Stand-alone and hybrid wind energy systems is a synthesis of the most recent knowledge and experience on wind-based hybrid renewable energy systems, comprehensively covering the scientific, technical and socio-economic issues involved in the application of these systems. Part one presents an overview of the fundamental science and engineering of stand-alone and hybrid wind energy systems and energy storage technology, including design and performance optimisation methods and feasibility assessment for these systems. Part two initially reviews the design, development, operation and optimisation of stand-alone and hybrid wind energy systems – including wind-diesel, wind -photovoltaic (PV), wind-hydrogen, and wind-hydropower energy systems – before moving on to examine applicable energy storage technology, including electro-chemical, flywheel (kinetic) and compressed air energy storage technologies. Finally, Part three assesses the integration of stand-alone and hybrid wind energy systems and energy technology into remote micro-grids and buildings, and their application for desalination systems. With its distinguished editor and international team of contributors, Stand-alone and hybrid wind energy systems is a standard reference for all renewable energy professionals, consultants, researchers and academics from post-graduate level up. Provides an overview of the fundamental science and engineering of stand-alone hybrid and wind energy systems, including design and performance optimisation methods Reviews the development and operation of stand-alone and hybrid wind energy systems Assesses the integration of stand-alone and hybrid wind energy systems and energy storage technology into remote micro-grids and buildings, and their application for desalination systems