Rational Machines and Artificial Intelligence Books

Click Get Book Button To Download or read online Rational Machines and Artificial Intelligence books, Available in PDF, ePub, Tuebl and Kindle. This site is like a library, Use search box in the widget to get ebook that you want.

Rational Machines and Artificial Intelligence


Rational Machines and Artificial Intelligence
  • Author : Tshilidzi Marwala
  • Publisher : Academic Press
  • Release : 2021-04-15
  • ISBN : 9780128209448
  • Language : En, Es, Fr & De
GET BOOK

Intelligent machines are populating our social, economic and political spaces. These intelligent machines are powered by Artificial Intelligence technologies such as deep learning. They are used in decision making. One element of decision making is the issue of rationality. Regulations such as the General Data Protection Regulation (GDPR) require that decisions that are made by these intelligent machines are explainable. Rational Machines and Artificial Intelligence proposes that explainable decisions are good but the explanation must be rational to prevent these decisions from being challenged. Noted author Tshilidzi Marwala studies the concept of machine rationality and compares this to the rationality bounds prescribed by Nobel Laureate Herbert Simon and rationality bounds derived from the work of Nobel Laureates Richard Thaler and Daniel Kahneman. Rational Machines and Artificial Intelligence describes why machine rationality is flexibly bounded due to advances in technology. This effectively means that optimally designed machines are more rational than human beings. Readers will also learn whether machine rationality can be quantified and identify how this can be achieved. Furthermore, the author discusses whether machine rationality is subjective. Finally, the author examines whether a population of intelligent machines collectively make more rational decisions than individual machines. Examples in biomedical engineering, social sciences and the financial sectors are used to illustrate these concepts. Provides an introduction to the key questions and challenges surrounding Rational Machines, including, When do we rely on decisions made by intelligent machines? What do decisions made by intelligent machines mean? Are these decisions rational or fair? Can we quantify these decisions? and Is rationality subjective? Introduces for the first time the concept of rational opportunity costs and the concept of flexibly bounded rationality as a rationality of intelligent machines and the implications of these issues on the reliability of machine decisions Includes coverage of Rational Counterfactuals, group versus individual rationality, and rational markets Discusses the application of Moore’s Law and advancements in Artificial Intelligence, as well as developments in the area of data acquisition and analysis technologies and how they affect the boundaries of intelligent machine rationality

Artificial Intelligence Techniques for Rational Decision Making


Artificial Intelligence Techniques for Rational Decision Making
  • Author : Tshilidzi Marwala
  • Publisher : Springer
  • Release : 2014-10-20
  • ISBN : 9783319114248
  • Language : En, Es, Fr & De
GET BOOK

Develops insights into solving complex problems in engineering, biomedical sciences, social science and economics based on artificial intelligence. Some of the problems studied are in interstate conflict, credit scoring, breast cancer diagnosis, condition monitoring, wine testing, image processing and optical character recognition. The author discusses and applies the concept of flexibly-bounded rationality which prescribes that the bounds in Nobel Laureate Herbert Simon’s bounded rationality theory are flexible due to advanced signal processing techniques, Moore’s Law and artificial intelligence. Artificial Intelligence Techniques for Rational Decision Making examines and defines the concepts of causal and correlation machines and applies the transmission theory of causality as a defining factor that distinguishes causality from correlation. It develops the theory of rational counterfactuals which are defined as counterfactuals that are intended to maximize the attainment of a particular goal within the context of a bounded rational decision making process. Furthermore, it studies four methods for dealing with irrelevant information in decision making: Theory of the marginalization of irrelevant information Principal component analysis Independent component analysis Automatic relevance determination method In addition it studies the concept of group decision making and various ways of effecting group decision making within the context of artificial intelligence. Rich in methods of artificial intelligence including rough sets, neural networks, support vector machines, genetic algorithms, particle swarm optimization, simulated annealing, incremental learning and fuzzy networks, this book will be welcomed by researchers and students working in these areas.

Causality Correlation and Artificial Intelligence for Rational Decision Making


Causality  Correlation and Artificial Intelligence for Rational Decision Making
  • Author : Tshilidzi Marwala
  • Publisher : World Scientific
  • Release : 2015-01-02
  • ISBN : 9789814630887
  • Language : En, Es, Fr & De
GET BOOK

Causality has been a subject of study for a long time. Often causality is confused with correlation. Human intuition has evolved such that it has learned to identify causality through correlation. In this book, four main themes are considered and these are causality, correlation, artificial intelligence and decision making. A correlation machine is defined and built using multi-layer perceptron network, principal component analysis, Gaussian Mixture models, genetic algorithms, expectation maximization technique, simulated annealing and particle swarm optimization. Furthermore, a causal machine is defined and built using multi-layer perceptron, radial basis function, Bayesian statistics and Hybrid Monte Carlo methods. Both these machines are used to build a Granger non-linear causality model. In addition, the Neyman–Rubin, Pearl and Granger causal models are studied and are unified. The automatic relevance determination is also applied to extend Granger causality framework to the non-linear domain. The concept of rational decision making is studied, and the theory of flexibly-bounded rationality is used to extend the theory of bounded rationality within the principle of the indivisibility of rationality. The theory of the marginalization of irrationality for decision making is also introduced to deal with satisficing within irrational conditions. The methods proposed are applied in biomedical engineering, condition monitoring and for modelling interstate conflict. Contents:Introduction to Artificial Intelligence based Decision MakingWhat is a Correlation Machine?What is a Causal Machine?Correlation Machines Using Optimization MethodsNeural Networks for Modeling Granger CausalityRubin, Pearl and Granger Causality Models: A Unified ViewCausal, Correlation and Automatic Relevance Determination Machines for Granger CausalityFlexibly-bounded RationalityMarginalization of Irrationality in Decision MakingConclusions and Further Work Readership: Graduate students, researchers and professionals in the field of artificial intelligence. Key Features:It proposes fresh definition of causality and proposes two new theories i.e. flexibly bounded rationality and marginalization of irrationality theory for decision makingIt also applies these techniques to a diverse areas in engineering, political science and biomedical engineeringKeywords:Causality;Correlation;Artificial Intelligence;Rational Decision Making

Artificial Intelligence and Economic Theory Skynet in the Market


Artificial Intelligence and Economic Theory  Skynet in the Market
  • Author : Tshilidzi Marwala
  • Publisher : Springer
  • Release : 2017-09-18
  • ISBN : 9783319661049
  • Language : En, Es, Fr & De
GET BOOK

This book theoretically and practically updates major economic ideas such as demand and supply, rational choice and expectations, bounded rationality, behavioral economics, information asymmetry, pricing, efficient market hypothesis, game theory, mechanism design, portfolio theory, causality and financial engineering in the age of significant advances in man-machine systems. The advent of artificial intelligence has changed many disciplines such as engineering, social science and economics. Artificial intelligence is a computational technique which is inspired by natural intelligence concepts such as the swarming of birds, the working of the brain and the pathfinding of the ants. Artificial Intelligence and Economic Theory: Skynet in the Market analyses the impact of artificial intelligence on economic theories, a subject that has not been studied. It also introduces new economic theories and these are rational counterfactuals and rational opportunity costs. These ideas are applied to diverse areas such as modelling of the stock market, credit scoring, HIV and interstate conflict. Artificial intelligence ideas used in this book include neural networks, particle swarm optimization, simulated annealing, fuzzy logic and genetic algorithms. It, furthermore, explores ideas in causality including Granger as well as the Pearl causality models.

Philosophy and Theory of Artificial Intelligence 2017


Philosophy and Theory of Artificial Intelligence 2017
  • Author : Vincent C. Müller
  • Publisher : Springer
  • Release : 2018-08-28
  • ISBN : 9783319964485
  • Language : En, Es, Fr & De
GET BOOK

This book reports on the results of the third edition of the premier conference in the field of philosophy of artificial intelligence, PT-AI 2017, held on November 4 - 5, 2017 at the University of Leeds, UK. It covers: advanced knowledge on key AI concepts, including complexity, computation, creativity, embodiment, representation and superintelligence; cutting-edge ethical issues, such as the AI impact on human dignity and society, responsibilities and rights of machines, as well as AI threats to humanity and AI safety; and cutting-edge developments in techniques to achieve AI, including machine learning, neural networks, dynamical systems. The book also discusses important applications of AI, including big data analytics, expert systems, cognitive architectures, and robotics. It offers a timely, yet very comprehensive snapshot of what is going on in the field of AI, especially at the interfaces between philosophy, cognitive science, ethics and computing.