# Spectral Radius of Graphs Books

Click Get Book Button To Download or read online Spectral Radius of Graphs books, Available in PDF, ePub, Tuebl and Kindle. This site is like a library, Use search box in the widget to get ebook that you want.

## Spectral Radius of Graphs

- Author : Dragan Stevanovic
- Publisher : Academic Press
- Release : 2014-10-13
- ISBN : 9780128020975
- Language : En, Es, Fr & De

**GET BOOK**

Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the book delves deeper into the properties of the principal eigenvector; a critical subject as many of the results on the spectral radius of graphs rely on the properties of the principal eigenvector for their proofs. A following chapter surveys spectral radius of special graphs, covering multipartite graphs, non-regular graphs, planar graphs, threshold graphs, and others. Finally, the work explores results on the structure of graphs having extreme spectral radius in classes of graphs defined by fixing the value of a particular, integer-valued graph invariant, such as: the diameter, the radius, the domination number, the matching number, the clique number, the independence number, the chromatic number or the sequence of vertex degrees. Throughout, the text includes the valuable addition of proofs to accompany the majority of presented results. This enables the reader to learn tricks of the trade and easily see if some of the techniques apply to a current research problem, without having to spend time on searching for the original articles. The book also contains a handful of open problems on the topic that might provide initiative for the reader's research. Dedicated coverage to one of the most prominent graph eigenvalues Proofs and open problems included for further study Overview of classical topics such as spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem

## Spectral Radius of Graphs

- Author : Dragan Stevanovic
- Publisher : Academic Press
- Release : 2014-10-08
- ISBN : 0128020687
- Language : En, Es, Fr & De

**GET BOOK**

Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the book delves deeper into the properties of the principal eigenvector; a critical subject as many of the results on the spectral radius of graphs rely on the properties of the principal eigenvector for their proofs. A following chapter surveys spectral radius of special graphs, covering multipartite graphs, non-regular graphs, planar graphs, threshold graphs, and others. Finally, the work explores results on the structure of graphs having extreme spectral radius in classes of graphs defined by fixing the value of a particular, integer-valued graph invariant, such as: the diameter, the radius, the domination number, the matching number, the clique number, the independence number, the chromatic number or the sequence of vertex degrees. Throughout, the text includes the valuable addition of proofs to accompany the majority of presented results. This enables the reader to learn tricks of the trade and easily see if some of the techniques apply to a current research problem, without having to spend time on searching for the original articles. The book also contains a handful of open problems on the topic that might provide initiative for the reader's research. Dedicated coverage to one of the most prominent graph eigenvalues Proofs and open problems included for further study Overview of classical topics such as spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem

## Spectral Radius and Extremal Graphs for Class of Unicyclic Graph with Pendant Vertices

- Author :
- Publisher :
- Release : 2017
- ISBN : OCLC:1051940045
- Language : En, Es, Fr & De

**GET BOOK**

In this article, we research on the spectral radius of extremal graphs for the unicyclic graphs with girth g mainly by the graft transformation and matching and obtain the upper bounds of the spectral radius of unicyclic graphs.

## Inequalities for Graph Eigenvalues

- Author : Zoran StaniÄ‡
- Publisher : Cambridge University Press
- Release : 2015-07-23
- ISBN : 9781107545977
- Language : En, Es, Fr & De

**GET BOOK**

Explores the inequalities for eigenvalues of the six matrices associated with graphs. Includes the main results and selected applications.

## Spectra of Graphs

- Author : Andries E. Brouwer
- Publisher : Springer Science & Business Media
- Release : 2011-12-17
- ISBN : 9781461419396
- Language : En, Es, Fr & De

**GET BOOK**

This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association schemes, p-ranks of configurations and similar topics. Exercises at the end of each chapter provide practice and vary from easy yet interesting applications of the treated theory, to little excursions into related topics. Tables, references at the end of the book, an author and subject index enrich the text. Spectra of Graphs is written for researchers, teachers and graduate students interested in graph spectra. The reader is assumed to be familiar with basic linear algebra and eigenvalues, although some more advanced topics in linear algebra, like the Perron-Frobenius theorem and eigenvalue interlacing are included.