The Era of Artificial Intelligence and Machine Learning in the Pharmaceutical Industry Books

Click Get Book Button To Download or read online The Era of Artificial Intelligence and Machine Learning in the Pharmaceutical Industry books, Available in PDF, ePub, Tuebl and Kindle. This site is like a library, Use search box in the widget to get ebook that you want.

The Era of Artificial Intelligence Machine Learning and Data Science in the Pharmaceutical Industry


The Era of Artificial Intelligence  Machine Learning  and Data Science in the Pharmaceutical Industry
  • Author : Stephanie K. Ashenden
  • Publisher : Academic Press
  • Release : 2021-05-07
  • ISBN : 9780128204498
  • Language : En, Es, Fr & De
GET BOOK

The Era of Artificial Intelligence, Machine Learning and Data Science in the Pharmaceutical Industry examines the drug discovery process, assessing how new technologies have improved effectiveness. Artificial intelligence and machine learning are considered the future for a wide range of disciplines and industries, including the pharmaceutical industry. In an environment where producing a single approved drug costs millions and takes many years of rigorous testing prior to its approval, reducing costs and time is of high interest. This book follows the journey that a drug company takes when producing a therapeutic, from the very beginning to ultimately benefitting a patient’s life. This comprehensive resource will be useful to those working in the pharmaceutical industry, but will also be of interest to anyone doing research in chemical biology, computational chemistry, medicinal chemistry and bioinformatics. Demonstrates how the prediction of toxic effects is performed, how to reduce costs in testing compounds, and its use in animal research Written by the industrial teams who are conducting the work, showcasing how the technology has improved and where it should be further improved Targets materials for a better understanding of techniques from different disciplines, thus creating a complete guide

Artificial Intelligence in Drug Discovery


Artificial Intelligence in Drug Discovery
  • Author : Nathan Brown
  • Publisher : Royal Society of Chemistry
  • Release : 2020-11-11
  • ISBN : 9781839160547
  • Language : En, Es, Fr & De
GET BOOK

Following significant advances in deep learning and related areas interest in artificial intelligence (AI) has rapidly grown. In particular, the application of AI in drug discovery provides an opportunity to tackle challenges that previously have been difficult to solve, such as predicting properties, designing molecules and optimising synthetic routes. Artificial Intelligence in Drug Discovery aims to introduce the reader to AI and machine learning tools and techniques, and to outline specific challenges including designing new molecular structures, synthesis planning and simulation. Providing a wealth of information from leading experts in the field this book is ideal for students, postgraduates and established researchers in both industry and academia.

Competing in the Age of AI


Competing in the Age of AI
  • Author : Marco Iansiti
  • Publisher : Harvard Business Press
  • Release : 2020-01-07
  • ISBN : 9781633697638
  • Language : En, Es, Fr & De
GET BOOK

"a provocative new book" -- The New York Times AI-centric organizations exhibit a new operating architecture, redefining how they create, capture, share, and deliver value. Marco Iansiti and Karim R. Lakhani show how reinventing the firm around data, analytics, and AI removes traditional constraints on scale, scope, and learning that have restricted business growth for hundreds of years. From Airbnb to Ant Financial, Microsoft to Amazon, research shows how AI-driven processes are vastly more scalable than traditional processes, allow massive scope increase, enabling companies to straddle industry boundaries, and create powerful opportunities for learning--to drive ever more accurate, complex, and sophisticated predictions. When traditional operating constraints are removed, strategy becomes a whole new game, one whose rules and likely outcomes this book will make clear. Iansiti and Lakhani: Present a framework for rethinking business and operating models Explain how "collisions" between AI-driven/digital and traditional/analog firms are reshaping competition, altering the structure of our economy, and forcing traditional companies to rearchitect their operating models Explain the opportunities and risks created by digital firms Describe the new challenges and responsibilities for the leaders of both digital and traditional firms Packed with examples--including many from the most powerful and innovative global, AI-driven competitors--and based on research in hundreds of firms across many sectors, this is your essential guide for rethinking how your firm competes and operates in the era of AI.

Machine Learning and the Internet of Medical Things in Healthcare


Machine Learning and the Internet of Medical Things in Healthcare
  • Author : Krishna Kant Singh
  • Publisher : Elsevier
  • Release : 2021-05-03
  • ISBN : 9780128212295
  • Language : En, Es, Fr & De
GET BOOK

Machine Learning and the Internet of Medical Things in Healthcare discusses the applications and challenges of machine learning for healthcare applications. The book provides a platform for presenting machine learning-enabled healthcare techniques and offers a mathematical and conceptual background of the latest technology. It describes machine learning techniques along with the emerging platform of the Internet of Medical Things used by practitioners and researchers worldwide. The book includes deep feed forward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology. It also presents the concepts of the Internet of Things, the set of technologies that develops traditional devices into smart devices. Finally, the book offers research perspectives, covering the convergence of machine learning and IoT. It also presents the application of these technologies in the development of healthcare frameworks. Provides an introduction to the Internet of Medical Things through the principles and applications of machine learning Explains the functions and applications of machine learning in various applications such as ultrasound imaging, biomedical signal processing, robotics, and biomechatronics Includes coverage of the evolution of healthcare applications with machine learning, including Clinical Decision Support Systems, artificial intelligence in biomedical engineering, and AI-enabled connected health informatics, supported by real-world case studies

Artificial Intelligence in Practice


Artificial Intelligence in Practice
  • Author : Bernard Marr
  • Publisher : John Wiley & Sons
  • Release : 2019-04-15
  • ISBN : 9781119548980
  • Language : En, Es, Fr & De
GET BOOK

Cyber-solutions to real-world business problems Artificial Intelligence in Practice is a fascinating look into how companies use AI and machine learning to solve problems. Presenting 50 case studies of actual situations, this book demonstrates practical applications to issues faced by businesses around the globe. The rapidly evolving field of artificial intelligence has expanded beyond research labs and computer science departments and made its way into the mainstream business environment. Artificial intelligence and machine learning are cited as the most important modern business trends to drive success. It is used in areas ranging from banking and finance to social media and marketing. This technology continues to provide innovative solutions to businesses of all sizes, sectors and industries. This engaging and topical book explores a wide range of cases illustrating how businesses use AI to boost performance, drive efficiency, analyse market preferences and many others. Best-selling author and renowned AI expert Bernard Marr reveals how machine learning technology is transforming the way companies conduct business. This detailed examination provides an overview of each company, describes the specific problem and explains how AI facilitates resolution. Each case study provides a comprehensive overview, including some technical details as well as key learning summaries: Understand how specific business problems are addressed by innovative machine learning methods Explore how current artificial intelligence applications improve performance and increase efficiency in various situations Expand your knowledge of recent AI advancements in technology Gain insight on the future of AI and its increasing role in business and industry Artificial Intelligence in Practice: How 50 Successful Companies Used Artificial Intelligence to Solve Problems is an insightful and informative exploration of the transformative power of technology in 21st century commerce.