Understanding Complex Ecosystem Dynamics Books

Click Get Book Button To Download or read online Understanding Complex Ecosystem Dynamics books, Available in PDF, ePub, Tuebl and Kindle. This site is like a library, Use search box in the widget to get ebook that you want.

Understanding Complex Ecosystem Dynamics


Understanding Complex Ecosystem Dynamics
  • Author : William S. Yackinous
  • Publisher : Academic Press
  • Release : 2015-06-03
  • ISBN : 9780128020630
  • Language : En, Es, Fr & De
GET BOOK

Understanding Complex Ecosystem Dynamics: A Systems and Engineering Perspective takes a fresh, interdisciplinary perspective on complex system dynamics, beginning with a discussion of relevant systems and engineering skills and practices, including an explanation of the systems approach and its major elements. From this perspective, the author formulates an ecosystem dynamics functionality-based framework to guide ecological investigations. Next, because complex system theory (across many subject matter areas) is crucial to the work of this book, relevant network theory, nonlinear dynamics theory, cellular automata theory, and roughness (fractal) theory is covered in some detail. This material serves as an important resource as the book proceeds. In the context of all of the foregoing discussion and investigation, a view of the characteristics of ecological network dynamics is constructed. This view, in turn, is the basis for the central hypothesis of the book, i.e., ecological networks are ever-changing networks with propagation dynamics that are punctuated, local-to-global, and perhaps most importantly fractal. To analyze and fully test this hypothesis, an innovative ecological network dynamics model is defined, designed, and developed. The modeling approach, which seeks to emulate features of real-world ecological networks, does not make a priori assumptions about ecological network dynamics, but rather lets the dynamics develop as the model simulation runs. Model analysis results corroborate the central hypothesis. Additional important insights and principles are suggested by the model analysis results and by the other supporting investigations of this book – and can serve as a basis for going-forward complex system dynamics research, not only for ecological systems but for complex systems in general. Provides a fresh interdisciplinary perspective, offers a broad integrated development, and contains many new ideas Clearly explains the elements of the systems approach and applies them throughout the book Takes on the challenging and open issues of complex system network dynamics Develops and utilizes a new, innovative ecosystem dynamics modeling approach Contains over 135 graphic illustrations to help the reader visualize and understand important concepts

Modelling Complex Ecological Dynamics


Modelling Complex Ecological Dynamics
  • Author : Fred Jopp
  • Publisher : Springer
  • Release : 2011-03-04
  • ISBN : 364205028X
  • Language : En, Es, Fr & De
GET BOOK

Model development is of vital importance for understanding and management of ecological processes. Identifying the complex relationships between ecological patterns and processes is a crucial task. Ecological modelling—both qualitatively and quantitatively—plays a vital role in analysing ecological phenomena and for ecological theory. This textbook provides a unique overview of modelling approaches. Representing the state-of-the-art in modern ecology, it shows how to construct and work with various different model types. It introduces the background of each approach and its application in ecology. Differential equations, matrix approaches, individual-based models and many other relevant modelling techniques are explained and demonstrated with their use. The authors provide links to software tools and course materials. With chapters written by leading specialists, “Modelling Complex Ecological Dynamics” is an essential contribution to expand the qualification of students, teachers and scientists alike.

Modelling Complex Ecological Dynamics


Modelling Complex Ecological Dynamics
  • Author : Fred Jopp
  • Publisher : Springer Science & Business Media
  • Release : 2011-02-11
  • ISBN : 3642050298
  • Language : En, Es, Fr & De
GET BOOK

Model development is of vital importance for understanding and management of ecological processes. Identifying the complex relationships between ecological patterns and processes is a crucial task. Ecological modelling—both qualitatively and quantitatively—plays a vital role in analysing ecological phenomena and for ecological theory. This textbook provides a unique overview of modelling approaches. Representing the state-of-the-art in modern ecology, it shows how to construct and work with various different model types. It introduces the background of each approach and its application in ecology. Differential equations, matrix approaches, individual-based models and many other relevant modelling techniques are explained and demonstrated with their use. The authors provide links to software tools and course materials. With chapters written by leading specialists, “Modelling Complex Ecological Dynamics” is an essential contribution to expand the qualification of students, teachers and scientists alike.

Understanding Ecological Response to Disturbance


Understanding Ecological Response to Disturbance
  • Author : Nancy Shackelford
  • Publisher :
  • Release : 2017
  • ISBN : OCLC:1199654992
  • Language : En, Es, Fr & De
GET BOOK

Ecosystems in the modern world face a vast array of disturbances, from globally shifting abiotic conditions, to increasingly variable extreme natural events, to high intensity discrete human-caused disturbances. Well-developed, applicable theoretical frameworks on how ecosystems can respond to and withstand these disturbances are needed for adequate management of valued ecological systems. To date, the most promising theoretical development for understanding ecological response to complex sets of disturbances is resilience. Ecological resilience acknowledges non-linear ecosystem behavior, incorporates the role of slowly changing environmental parameters in ecological dynamics, and offers one of the few potential methods to predict, and avoid, impending ecological collapse. However, as ecological resilience has evolved conceptually to include social, political, and economic fields, it has become increasingly difficult to clearly define in, and apply to, managed ecosystems. This dissertation pairs ecological resilience with other, well-established attributes of ecological response to disturbance, namely resistance, persistence, and recovery. By doing so, we can clearly define and quantify each attribute in a range of ecosystem types and over a variety of ecological scales. In Chapter 1, we use microcosm communities to test the relationship between one potential mechanism, landscape connectivity, and multiple attributes of ecological response to disturbance including resistance, resilience, and recovery. We find that each attribute responds uniquely to connectivity, and that generalizing the role of connectivity over all three may give an inaccurate prediction of how ecosystems may respond to individual disturbances. In Chapter 2, we experimentally investigate the presence of early warning indicators of approaching critical thresholds. Using water table drawdown treatments in bog, we test for critical slowing and increased autocorrelation as the bog approaches a transition to forest. We find that critical slowing is clear in composition and moss cover, but that autocorrelation is not apparent. The decoupling of critical slowing and increased autocorrelation could be due to a number of complex ecosystem dynamics, all of which are common in ecosystem management globally. Thus, early warning indicators likely need further development if they are to become applicable. In Chapter 3, we observationally study how conservation management actions may increase or decrease ecological resilience. In particular, we explore how invasive species management intensity correlates with changes in functional redundancy, response diversity, and spatial occurrence of regime shifts in Garry oak meadows. We find that more intense management correlates with less area lost to woody encroachment and increases in functional redundancy through time. However, the relationship was strongly mediated by individual landscape settings. Finally, in Chapter 4, we scale up to a provincial study, investigating persistence of ecosystems and large mammal species in the face of the continuous pressures of land use change. In the results from all four chapters, it is clear that individual attributes of ecological response to disturbance, i.e. resistance, persistence, resilience, or recovery, all play unique roles in ecosystem dynamics. Additionally, the metric chosen to quantify each attribute can play a pivotal role in how we interpret observed dynamics. The work in this dissertation highlights that we cannot understand or predict ecological response to disturbance without clear, measurable concepts. Around a single state of interest, resilience is only one among a suite of attributes that are important to understand. Its additional strength, of potentially predicting the occurrence of ecological thresholds, is still being developed as we explore methods of quantification and application in individual ecosystems.

The Structure and Dynamics of Human Ecosystems


The Structure and Dynamics of Human Ecosystems
  • Author : William R. Burch
  • Publisher : Yale University Press
  • Release : 2017-08-22
  • ISBN : 9780300231632
  • Language : En, Es, Fr & De
GET BOOK

A landmark book that strives to provide both grand theory and practical application, innovatively describing the structure and dynamics of human ecosystems As the world faces ever more complex and demanding environmental and social challenges, the need for interdisciplinary models and practical guidance becomes acute. The Human Ecosystem Model described in this landmark book provides an innovative response. Broad in scope, detailed in method, at once theoretical and applied, this grand study offers an in-depth understanding of human ecosystems and tools for action. The authors draw from Goethe’s Faust, classic anthropology and sociology studies, contemporary ecosystem ecology, Buddhist ethics, and more to create a paradigm-shifting model and a major advance in interdisciplinary ecology.